
SAMPLE exam NMAI059 Probability and Statistics 1 – 2020/21
1. (10 points) The following table describes the joint probability function pX,Y (x, y) of the
random vector (X, Y ). These random variables only take values indicated in the table. We
know that E(X) = 1/2.

x
y −1 0 1

0 a 1/8 1/4
1 1/8 b 1/8

(a) Determine a and b.
(b) Decide whether X and Y are independent.

Solution:

(a) We known that

E(X) = 0 · pX(0) + 1 · pX(1) = pX,Y (1,−1) + pX,Y (1, 0) + pX,Y (1, 1) = 1/8 + b+ 1/8,

and so b = 1/4. All numbers in the table sum to 1, so a = 1/8.

(b) Even without solving (a) we know that pX(0) = pX(1) = 1/2. If X and Y were
independent, both numbers in each column would be the same and this is not the same, e.g.,
in the last one.

2. (10 points) Peter repeatedly tries to defeat a stronger opponent in chess. If Peter wins,
he gains 10 points, otherwise (even in the event of a draw) he loses 2 points. Peter wins with
probability 1/4.

(a) In how many rounds does Peter win for the first time (on average)?
(b) If Peter has 6 points at the beginning, with what probability will he be at zero

after at most five rounds?
(c) What is the distribution of S, Peter’s score after five games, if he has zero points

at the start (negative points are allowed)? Describe the probability mass function of S.

Solution:

(a) The number of round, when Peter first wins, follows Geom(1/4) distribution, thus
the desired expectation is 1

1/4
= 4.

(b) If Peter wins, he gets 16 points and not even four wins do not bring him to zero.
Thus if he is at zero after ≤ 5 rounds, he had to lose three times in a row. This occurs with
probability (3/4)3.

(c) We can imagine that in each round Peter loses two points and then get a chance
to win 12 points with probability 1/4. The total score is therefore −10 + 12 · Bin(5, 1/4).
Thus Peter has −10 + 12k points (for k = 0, 1, . . . , 5) with probability given by the binomial
distribution, that is

(
5
k

)
(1/4)k(3/4)5−k.



(d) Expected gain in each round is µ = +10 · 1
4
− 2 · 3

4
= 1. We could also calculate

variance, but it is sufficient that it is some constant σ2.
In ten rounds Peter will have ten points in expectation, in hudred rounds hundred points.

Thus we ask for the probability of substantially better gain, even “linearly better than the
average”. This probability should decrease with increasing n, as for large n the average is
closer to the expectation.

Now properly: Central limit theorem implies that the (X1 + · · ·+Xn−nµ)/(σ
√
n) appro-

ximately follows the standard normal distribution. When we move from n = 10 to n = 100,
the numerator increases ten times, while the denominator only

√
10-times. Thus we ask, if

the standard normal distribution generates much larger number, that is the probability for
n = 100 will be (substantially) smaller.

(As a matter of fact, for n = 10 the probability is 0.224, for n = 100 just 0.027. You do
not need to evaluate this during the test.)

3. (10 points) You’re throwing a party for 100 guests and wondering how many sandwiches
to order. You know from experience that the number of sandwiches eaten by a random guest
follows a Poisson distribution with a mean of 3. Approximately how many sandwiches do
you need to order so that with probability 0.95 no guest will go hungry?

(Use an appropriate limit theorem.)

Solution:Let Xi denote the number of sandwiches eaten by the i-th guest. We are told that
Xi ∼ Pois(3). From properties of Poisson distribution it follows that E(Xi) = var(Xi) = 3.
By Central Limit Theorem X1+···+X100−300√

3·
√
100

appropriately follows standard normal distribution
N(0, 1), thus

P (X1 + · · ·+X100 ≤ 300 + t
√

300)
.
= Φ(t).

To make this 95 %, we have to buy 300 +
√

300 · Φ−1(0.95) sandwiches. (This equals
328.5, but you don’t need to evaluate this in the test. In R we can ask also directly for
qnorm(0.95,300,sqrt(300)).)

An alternative solution without the limit theorem: we know that the sum of Poisson
distributions is again a Poisson distribution. Thus the number of sandwiches eaten by the
100 guests follows Pois(300). We are interested in the quantile function of this distribution
at point 0.95. There is no simplification of this, but R can evaluate it by qpois(0.95,300),
we get 329.

4. (10 points) (a) Define the concept of probability density function of a random varia-
ble X.

(b) Describe how to use it to determine E(X).



Solution:

(a) We say that f : R→ [0,∞) is a probability density function of a random variable X,
if for every x ∈ R we have

P (X ≤ x) =

∫ x

−∞
f(t)dt.

(b) By the LOTUS law and the formula to compute variance we get

var(X) = E(X2)− E(X)2 =

∫ ∞
−∞

t2f(t)dt−
(∫ ∞
−∞

tf(t)dt
)2

5. (10 points) State the theorem – the universality of uniform distribution. Explain how it
can be used.

Solution:

Let F be a function “of CDF-type”: nondecreasing right-continuous function with
limx→−∞ F (x) = 0 a limx→+∞ F (x) = 1. Let Q be the corresponding quantile
function.

Let U ∼ U(0, 1) and X = Q(U). Then X has CDF F .

The theorem is useful to sample random variables with a given distribution – we need to
be able to sample a uniform random variable on (0, 1) and to evalutate the quantile function.
We also discussed another, related theorem:

Let X be a r.v. with CDF FX = F , suppose F is increasing. Then F (X) ∼
U(0, 1).

We can use this one for testing: if we have a procedure for testing that a random variable
follows the uniform distribution, we can use it to test any other continuous distribution.

6. (10 points) State the theorem – the weak law of large numbers. Prove it.

Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Let Sn = (X1 +
· · ·+Xn)/n be the sample mean. Then for every ε > 0 we have

lim
n→∞

P (|Sn − µ| > ε) = 0.

We say that sequence Sn converges to µ in probability and write Sn
P−→ µ).



We prove the result using Chebyshev inequality. We first calculate the expectation and
variance of X̄n:

E(X̄n) =
1

n
(E(X1) + · · ·+ E(Xn)) =

nµ

n
= µ

var(X̄n) =
1

n2
(var(X1) + · · ·+ var(Xn)) =

n · σ2

n2
=
σ2

n

By Chebyshev inequality we have

P (|X̄n − µ| > t · σ/
√
n) <

1

t2
.

For tσ/
√
n = ε we get 1/t2 = σ2

ε2n
, which tend to 0 as n→∞.


