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Series composition inverse

Recall: If A(x) ∈ C[[x]] is a power series with [x0]A(x) = 0 and [x1]A(x) 6= 0, then
there is a (unique) composition inverse B(x) = A〈−1〉(x) satisfying
A(B(x)) = B(A(x)) = x .

Goal: Compute the coefficients of B(x) from the coefficients of A(x).

Rephrasing the goal: We know that [x0]A(x) = 0, hence A(x) = xC(x) for a series
C(x). Moreover, [x0]C(x) = [x1]A(x) 6= 0, hence C(x) has a multiplicative inverse
F (x) = 1

C(x)
. Hence:

A(B(x)) = x

⇐⇒ B(x)C(B(x)) = x

⇐⇒ B(x) =
x

C(B(x))

⇐⇒ B(x) = xF (B(x))

New goal: For a power series F (x) ∈ C[[x]] with [x0]F (x) 6= 0, find the (unique)
power series B(x) satisfying B(x) = xF (B(x)).

Remark: If [x0]F (x) = 0 then the equation B(x) = xF (B(x)) has the (trivial) unique
solution B(x) = 0.
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Lagrange inversion formula(s)

Theorem (Lagrange inversion formula)

Suppose F (x) is a power series with [x0]F (x) 6= 0. Let B(x) ∈ C[[x]] be the solution
of the functional equation B(x) = xF (B(x)). Then the following holds:

1 For any n ∈ N,

[xn]B(x) =
1
n

[xn−1]F (x)n.

2 For any k, n ∈ N,

[xn]B(x)k =
k

n
[xn−k ]F (x)n.

3 For any G(x) ∈ C[[x]] and n ∈ N,

[xn]G(B(x)) =
1
n

[xn−1]

(
F (x)n

d
dx

G(x)

)
.

Note: 2⇒ 1 by taking k = 1, and 3⇒ 2 by taking G(x) = xk .

Note: 2⇒ 3 by linearity: for G(x) =
∑∞

k=0 gkxk , we get

[xn]G(B(x)) = [xn]
∞∑

k=0

gkB(x)k = [xn]
∞∑

k=1

gkB(x)k =
∞∑

k=1

gk
k

n
[xn−k ]F (x)n =

∞∑
k=1

gk
k

n
[xn−1]xk−1F (x)n =

1
n

[xn−1]F (x)n
∞∑

k=1

kgkxk−1 =
1
n

[xn−1]

(
F (x)n

d
dx

G(x)

)
.
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Computations with residues

Recall: If f is a complex function meromorphic in 0, then there is a d ∈ Z such that
on a punctured neighborhood of 0, f is equal to a Laurent series f (z) =

∑
n≥d fnzn.

The coefficient f−1 in this series is the residue of f in 0, denoted Res0(f ).

Lemma (Derivatives have no residues)

With f as above, if f has a primitive function on a punctured neighborhood of 0, then
Res0(f ) = 0.

Proof.

For a circle γ around 0 of small enough radius, we have

Res0(f ) =
1
2πi

∫
γ

f = 0,

where the intergal is 0, because f has a primitive function.
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Substitution for residues

Lemma (Substitution rule for residues)

With f as above, if g(z) is analytic on 0 with g(0) = 0 and g ′(0) 6= 0, then
Res0(f (z)) = Res0(f (g(z))g ′(z)).

Proof.

With f (z) =
∑

n≥d fnzn and g(z) =
∑

n≥1 gnzn, we get

Res0(f (g(z))g ′(z)) = Res0

∑
n≥d

fng(z)ng ′(z)



= Res0

∑
n≥d

n 6=−1

(
fn

n + 1
g(z)n+1

)′+ Res0

(
f−1

g ′(z)

g(z)

)

= Res0

(
f−1

g1 + 2g2z + 3g3z2 + · · ·
g1z + g2z2 + g3z3 + · · ·

)
= Res0

(
f−1

z
·
g1 + 2g2z + 3g3z2 + · · ·
g1 + g2z + g3z2 + · · ·

)
= f−1 = Res0(f ).
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Back to Lagrange inversion formula

Recall: LIF says that [xn]B(x)k = k
n
[xn−k ]F (x)n, where B(x) is the solution of

B(x) = xF (B(x)) and F (x) is a given series with [x0]F (x) 6= 0.

Note: Both [xn]B(x)k and [xn−k ]F (x)n only depend on the coefficients of F of degree
at most n. Hence we may assume that F is a polynomial, and in particular an analytic
function.

Since F (0) 6= 0, x
F (x)

is analytic in 0.

Since B(x) is a composition inverse of x
F (x)

, it is analytic in 0 as well.

Proof of LIF.

k

n
[xn−k ]F (x)n =

k

n
Res0

F (x)n

xn−k+1 =
1
n

Res0

(
kxk−1 F (x)n

xn

)
=

1
n

Res0

(
kB(x)k−1 F (B(x))n

B(x)n
B′(x)

)
(substitute x → B(x))

=
1
n

Res0

(
kB(x)k−1 1

xn
B′(x)

)
(use

B(x)

F (B(x))
= x)

=
1
n

[xn−1]kB(x)k−1B′(x) =
1
n

[xn−1](B(x)k )′

= [xn]B(x)k
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Catalan trees revisited

Recall from Lecture 10: A binary tree is either a single leaf node, or an internal root
node together with an ordered pair of subtrees, which are both binary trees. Let tn be
the number of binary trees with n internal nodes. Let us deduce a formula for tn using
LIF.

The OGF T (z) =
∑∞

n=0 tnzn satisfies T (z) = 1 + zT 2(z).

Define T+(z) = T (z)− 1 to be the OGF of trees with at least one internal node. The
above formula gives T+(z) = z(T+(z) + 1)2.

In particular, T+(z) = zF (T+(z)) for F (z) = (z + 1)2. Hence, by LIF,

tn = [zn]T+(z) =
1
n

[zn−1](z + 1)2n

=
1
n

( 2n
n − 1

)
=

1
n + 1

(2n
n

)
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Plane trees and plane forests

A plane tree consists of a root node together with an ordered d-tuple of subtrees, for
some d ∈ N0. The size of a plane tree is its number of nodes (in particular, each plane
tree has positive size). Let pn be the number of plane trees of size n.

A plane forest with k components is an ordered k-tuple of plane trees. Let fn be the
number of plane forests with k components that have total size n (k is a fixed
constant).

Goal: Find an explicit formula for pn and fn.
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Labelled trees

A rooted tree of size n is a tree on the vertex set [n] with one vertex designated as
root. A rooted forest of size n is a graph on the vertex set [n] whose every component
is a rooted tree. Let rn be the number of rooted trees on the vertices [n], and let gn

be the number of rooted forests with k components on [n] (k again fixed).

Goal: Find an explicit formula for rn and gn.
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