
Version Space Search

Version space search is one of the first Machine Learning algorithms.
For us, introduction to Inductive Logic Programming.
Our (Tom Mitchell’s) toy data:

Example (Tennis Dataset)

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Overcast Mild High Weak Yes
D5 Overcast Mild High Strong Yes
D6 Overcast Hot Normal Weak Yes
D7 Rain Mild High Strong No

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 1 / 35

Version Space Search
Our hypothesis is a conjunction of attribute tests that imply
PlayTennis = yes.

h = ⟨?, Cold , High, ?, ?, ?⟩ represents the hypothesis
Temperature = cold & Humidity = high ⇒ PlayTennis = yes.

? is satisfied by any value
∅ cannot be satisfied

For binary attributes, we have 3|#attributes| + 1 hypotheses
hypotheses with ∅ are not satisfiable, therefore they are equivalent.
We perform a systematic search.
The hypothesis space is partially ordered by the subsumption.

Definition (More general, more specific)
The hypothesis hg is more general than the hypothesis hg ⪰ hs iff any sample that
satisfies hs satisfies also hg .
In the above case, the hypothesis hs , hg ⪰ hs is called more specific that hg .

⟨?, ?, ?, ?⟩ is more general than ⟨Sunny , . . . , Same⟩.
The most general hypothesis ⟨?, ?, ?, ?⟩ is satisfied by all data.
The most specific hypothesis ⟨∅, . . .⟩ is not satisfied by any data.
The hypothesis space for a lattice partially ordered by the ’more general’
relation.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 2 / 35

Find–S

We search for a hypothesis satisfied by all positive examples and no negative
example.

Find–S (to be improved)

1: procedure Find-S:(X dataset with the goal attritute yes/no)
2: h← ⟨∅, ∅, ∅, ∅⟩ # the most specific hypothesis
3: for each positive data sample xi do
4: for each attribute condition Xj = xi,j in h do
5: if xi does not satisfy Xj = xi,j then
6: replace the condition by
7: a closest more general condition satisfied by xi
8: end if
9: end for

10: end for
11: return h
12: end procedure

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 3 / 35

Version Space Search

Example (Tennis Dataset)

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Overcast Mild High Weak Yes
D5 Overcast Mild High Strong Yes
D6 Overcast Hot Normal Weak Yes
D7 Rain Mild High Strong No

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 4 / 35

Version Space

Now we look for all hypotheses consistent with the data.

Definition (Version Space)
The version space for the hypothesis space H and the data X is a subset of
H that is consistent with X

VS(H, X) = {h ∈ H|Consistent(h, X)}.

The version space is characterized by the most general and the most specific
boundary.
Any hypothesis between these boundaries is consistent with the data.

Definition (General Boundary)
The general boundary for the hypothesis space H and the data X is a set
of most general hypothesis from H that are consistent with X

G(H, X) = {g ∈ H|Consistent(g , X)&(∄g1 ∈ H)[g1 ≻ g&Consistent(g1, X)]}.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 5 / 35

Definition (Specific Boundary)
The specific boundary for the hypothesis space H and the data X is a set
of most specific hypothesis from H that are consistent with X

S(H, X) = {s ∈ H|Consistent(s, X)&(∄s1 ∈ H)[s ≻ s1&Consistent(s1, X)]}.

{<Sunny, Warm, ?,Strong,?,?>}

{<Sunny,?,?,?,?,?> <?, Warm, ?,?,?,?>}

{<Sunny, ?, ?,Strong,?,?>} {<Sunny, Warm, ?,?,?,?>} {<?, Warm, ?,Strong,?,?>}

G:

S:

Figure 1: Prostor verzı́ s částečným uspořádánı́m inkluzı́.We search for a hypothesis satisfied by all positive examples and no negative
example.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 6 / 35

1: procedure Candidate–Elimination:(X data,the goal att. yes/no)
2: G ← {⟨?, ?, ?, ?⟩}, S ← {⟨∅, ∅, ∅, ∅⟩} # general,specific
3: for each data sample xi do
4: if xi is positive then
5: remove from G all h inconsistent with xi
6: for each s ∈ S inconsistent with xi do
7: add to S all minimal generalizations h
8: Consistent(h, xi)&(∃g ∈ G)(g ⪰ h)
9: remove from S {s|(∃s1 ∈ S)(s ≻ s1)} # not most specific

10: end for
11: else xi is negative example
12: remove from S all h inconsistent with xi
13: for each g ∈ G inconsistent with xi do
14: add to G all minimal specifications h
15: Consistent(h, X)&(∃s ∈ S)(h ⪰ s)
16: remove from G {g |(∃g1 ∈ G)(g1 ≻ g)} # not most gen.
17: end for
18: end if
19: end for
20: return G , S
21: end procedure

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 7 / 35

Literature

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new
introduction. CoRR, abs/2008.07912, 2020.
S. Muggleton & all.: Meta-interpretive learning: application to grammatical
inference, http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 8 / 35

Predicate Logic
Recall predicate logic.
CNF, DNF the conjunctive and disjunctive normal form
clause: a disjunction of literals father(X , Y) ∨ ¬parent(X , Y) ∨ ¬male(X)
Horn clauses with at most one positive literal, written as a rule

definite clause father(X , Y) : −male(X), parent(X , Y).
fact - no negative literal male(adam).
goal clause - no positive literal false : −father(X , bob).

Ground term, clause - a term, a clause without variables.
We have our data in the form of a set of clauses B, E+, E−,

the background knowledge B is a set of (Horn) clauses,
the positive and examples E+, E− are sets of ground literals (facts).

Example

B =


lego_builder(alice).

enjoys_lego(A) := lego_builder(A).
estate_agent(dave).
enjoys_lego(alice).
enjoys_lego(claire).


E+ =

{
happy(alice).

}
E− =

 happy(bob).
happy(claire).
happy(dave).


Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 9 / 35

Substitution, Subsumption
Clauses ale implicitly generally quantified.
They should not have a variable with the same name.

Definition (Substitution, Subsumption)
Given a substitution θ = {vi/ti} and formula F . Fθ is formed by replacing
every variable vi in F by ti .
Substitution θ unifies atom A and B in the case Aθ = Bθ.
Atom A subsumes atom B, A ⪰ B, iff there exists a substitution θ such that
Aθ = B.
Clause C subsumes clause D, C ⪰ D, iff there exists a substitution θ such
that Cθ ⊆ D.

Example
C1 = f (A, B) : −head(A, B).
C2 = f (X , Y) : −head(X , Y), empty(Y).
C1 subsumes C2 since C1θ ⊆ C2 with θ = {A/X , B/Y }.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 10 / 35

Definition (Generalisation)
Clause C is more general than clause D, iff C |= D.
Clause C is more general than clause D with respect to B, iff B, C |= D.

B is the background knowledge.

Example
Statement A: Daffy Duck can fly. can_fly(daffy)
Statement B: All ducks can fly. can_fly(X) ⪰ can_fly(daffy).

Example
Statement C: Marek lives in London.
Statement D: Marek lives in England.

lives(marek, london)
lives(marek, england)
Background knowledge lives(x , england) : −lives(x , london).
B, C |= D, ’C is more general than D with respect to B’.
C ⪰ D with respect to B.
http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Lecture1.1.pdf

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 11 / 35

ILP general logical setting

Definition (Hypothesis Properies)
The background knowledge B and the hypothesis H should entail E , that is:

Necessity B ̸|= E+ we need H
Sufficiency (úplnost) B &H |= E+ H explains positive examples
Weak consistency B &H ̸|= ⊥ H does not contradict B
(Strong) consistency B &H &E− ̸|= ⊥ ... neither negative examples

ILP task
Given

B background knowledge (logic program)
E+, E− examples – sets of ground unit clauses

Given B, E find a logic program H such that is necessary, sufficient and
consistent.
Often, we assume noisy data and accept some errors, but we try to minimize
them.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 12 / 35

Example

B =



lego_builder(alice).
lego_builder(bob).

estate_agent(claire).
estate_agent(dave).
enjoys_lego(alice).
enjoys_lego(claire).


E+ =

{
happy(alice).

}
E− =

 happy(bob).
happy(claire).
happy(dave).


Our hypothesis space:

H =



h1 : happy(A) : −lego_builder(A).
h2 : happy(A) : −estate_agent(A).
h3 : happy(A) : −enjoys_lego(A).

h4 : happy(A) : −lego_builder(A), estate_agent(A).
h5 : happy(A) : −lego_builder(A), enjoys_lego(A).
h6 : happy(A) : −estate_agent(A), enjoys_lego(A).


B ∪ h1 ⊨ happy(bob) therefore h1 is inconsistent.
B ∪ h2 ⊭ happy(alice) therefore h2 is incomplete.
B ∪ h3 ⊨ happy(claire) therefore h3 is inconsistent.
B ∪ h4 ⊭ happy(alice) therefore h4 is incomplete.
h5 is both complete and consistent.
B ∪ h6 ⊭ happy(alice) therefore h1 in incomplete.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 13 / 35

Hypothesis Space
To specify (restrict) the hypothesis space usually mode declarations are used.

Definition (Mode declarations)
Mode declarations denote which literals may appear in the head/body of a rule. A
mode declaration is of the form:

mode(recall , pred(m1, m2, . . . , ma))

where recall is the maximum number of occurrences of the predicate
mi are the argument types and they may be assigned as input +, output −,
constant #.

Example
modeb(2,parent(+person,-person)).
modeh(1,happy(+person)).
modeb(*,member(+list,-element)).
modeb(1,head(+list,-element)).

A. Cropper and S. Dumancic. Inductive logic programming at 30: a new introduction.
CoRR, abs/2008.07912, 2020.Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 14 / 35

Non-monotonic reasoning

In Prolog, there is negation as a failure.

Example

Program =
{

sunny .
happy : −sunny , not weekday .

}
Prolog tries to prove weekday .
It does not prove it, therefore it concludes happy .
With additional knowledge weekday some of entailments are not true any
more.

Definition (Normal logic program)
Normal logic programs may include negated literals in the body of a clause, e.g.

h : −b1, . . . , bn, not bn+1, . . . , not bm.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 15 / 35

Aleph ILP system (based on Progol)
Given

A set of mode declaration M
Background knowledge B in the form of a normal program
allows negation, with the semantics negation as a failure
Positive E+ and negative E− examples as a set of ground facts

Return: A normal program hypothesis H that:
H is consistent with M
∀e ∈ E+, H ∪ B ⊨ e (H is complete)
∀e ∈ E−, H ∪ B ⊭ e (H is consistent).

Aleph

1. Select a positive example to generalize.
2. Construct the most specific clause consistent with M that entails the

example (the bottom clause).
3. Search for a clause more general than the bottom clause.

Add the clause to the hypothesis and remove all examples covered.
If a positive example left, return to step 1.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 16 / 35

Bottom Clause Construction
The purpose is to bound the search in the step in 3.
Without mode declarations, the bottom clause may have infinite cardinality.

Definition (Bottom clause)
Let H be a clausal hypothesis and C be a clause. The bottom clause ⊥(C) is the
most specific clause such that:

H ∪ ⊥(C) ⊨ C .

Example (Bottom clause)

M =


: −modeh(∗, pos(+shape)).
: −modeb(∗, red(+shape)).

: −modeb(∗, square(+shape)).
: −modeb(∗, triangle(+shape)).
: −modeb(∗, polygon(+shape)).

 B =



red(s1).
blue(s2).

square(s1).
triange(s2).

polygon(A) : −rectangle(A).
rectangle(A) : −square(A).


Let e be the positive example pos(s1). Then:

⊥(e) = pos(A) : −red(A), square(A), rectangle(A), polygon(A).
Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 17 / 35

Clause Search
Aleph performs a bounded breadth-first search to enumerate the shorter
clauses before longer ones.
The search is bounded by several parameters (max. clause size, max. proof
depth).

Inductive Logic Programming At 30: A New Introduction

pos(A):-

pos(A):- red(A) pos(A):- square(A) pos(A):- rectangle(A) pos(A):- polygon(A)

pos(A):-
red(A),
square(A).

pos(A):-
red(A),
rectangle(A).

pos(A):-
red(A),
polygon(A).

pos(A):-
square(A),
rectangle(A).

pos(A):-
square(A),
polygon(A).

pos(A):-
rectangle(A),
polygon(A).

pos(A):-
red(A),
square(A),
rectangle(A).

pos(A):-
red(A),
square(A),
polygon(A).

pos(A):-
square(A),
rectangle(A),
polygon(A).

pos(A):-
red(A),
square(A),
rectangle(A),
polygon(A).

Most general hypothesis

Most specific hypothesis

Figure 5: Aleph bounds the hypothesis space from above (the most general hypothesis) and below (the
most specific hypothesis). Aleph starts the search from the most general hypothesis and spe-
cialises it (by adding literals from the bottom clause) until it finds the best hypothesis.

6.1.3 Discussion

Advantages. Aleph is one of themost popular ILP systems because (i) it has a stable and easily available
implementation with many options, and (ii) it has good empirical performance. Moreover, it is a single
Prolog file, which makes it easy to download and use40. Because it uses a bottom clause to bound the
search, Aleph is also efficient at identifying relevant constant symbols that may appear in a hypothesis,
which is not the case for pure top-down approaches41. Aleph also supports many other features, such as
numerical reasoning, inducing constraints, and allowing user-supplied cost functions.

Disadvantages. Because it is based on inverse entailment, and only learns a single clause at a time,
Aleph struggles to learn recursive programs and optimal programs and does not support PI. Aleph also
uses many parameters, such as parameters that change the search strategy when generalising a bottom
clause (step 3) and parameters that change the structure of learnable programs (such as limiting the
number of literals in the bottom clause). These parameters can greatly influence learning performance.
Even for experts, it is non-trivial to find a suitable set of parameters for a problem.

40. Courtesy of Fabrizio Riguzzi and Paolo Niccolò Giubelli, Aleph is now available as a SWIPL package at https://www.swi-
prolog.org/pack/list?p=aleph

41. As the Aleph manual states, “the bottom clause is really useful to introduce constants (these are obtained from the seed
example”.

43

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 18 / 35

Aleph 2, Popper, Flex
Aleph default evaluation function is coverage defined as P − N,

P is the number of positive examples covered by the clause
N is the number of negative examples covered by the clause
that means it accepts some noise.

It starts from the most general one pos(A) : −.
It tries to specialize the clause

by adding literals to the body of it, which it selects from the bottom clause
or by instantiating variables.
Each specialization is called refinement.
Aleph Advantages

one Prolog file, easy to download and use.
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

It has good empirical performance.
Allows numerical reasoning, user defined cost functions, handles noisy data.

Aleph Disadvantages
It has many parameters to tune.
It struggles to learn recursive programs and optimal programs

since it learns only a single clause a time.
Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 19 / 35

Metagol
Given

A set of metarules M
Background knowledge B in the form of a normal program
Positive E+ and negative E− examples as a set of facts (atoms).

Return: A definite program hypothesis H that:
H is consistent with M
∀e ∈ E+, H ∪ B ⊨ e (H is complete)
∀e ∈ E−, H ∪ B ⊭ e (H is consistent)
∀h ∈ H, ∃m ∈ M such that h = mθ

where θ is a substitution that grounds all the existentially quantified variables in
m.

Example (Metarule)
An example is the chain metarule P(A, B)← Q(A, C), R(C , B)
that allows Metagol to induce programs such as

f (A, B) : − tail(A, C), tail(C , B).
grandparent(A, B) : − parent(A, C), parent(C , B).

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 20 / 35

Metagol

Metagol is a form of ILP besed on a Prolog meta-interpreter.

Metagol

1. Select a positive example to generalize.
If none exists, test the hypothesis on the negative examples.

If the hypothesis does not entail any negative example
stop and return the hypothesis.
otherwise backtrack to a choice point at step 2 and continue.

2. Try to prove the atom by:
using given BK or an already induced clauses
unifying the atom with the head of a metarule
binding the variables in a metarule to symbols in the predicate and
constant signatures
save the substitution
try to prove the body of the metarule
by treating the body atoms as examples and applying step 2 to them.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 21 / 35

Recursion

Metagol can learn recursive programs.

Example (Reachability)
Consider learning the concept of reachability in a graph. Without recursion, with
the maximal depth 4 we could learn:

reachable(A, B) : − edge(A, B).
reachable(A, B) : − edge(A, C), edge(C , B).
reachable(A, B) : − edge(A, C), edge(C , D), edge(D, B).
reachable(A, B) : − edge(A, C), edge(C , D), edge(D, E), edge(E , B).

With recursion, we can learn:

reachable(A, B) : − edge(A, B).
reachable(A, B) : − edge(A, C), reachable(C , B).

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 22 / 35

Iterative deepening

iterative deepening

Metagol uses iterative deepening to search for hypotheses.
at depth d = 1, at least one metasub.
at iteration d , it introduces d − 1 new predicate symbols and is allowed
to use d clauses.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 23 / 35

Metagol Example

Example (Kinship example)

B =


mother(ann, amy).mother(ann, andy).

mother(amy , amelia), mother(amy , bob).
mother(linda, gavin).

father(steve, amy).father(steve, andy).
father(andy , sponegebob).father(gavin, amelia).


metarule(ident, [P, Q], [P, A, B], [[Q, A, B]]).
metarule(chain, [P, Q, R], [P, A, B], [[Q, A, C], [R, C , B]]).

E+ =


grandparent(ann, amelia).

grandparent(steve, amelia).
grandparent(ann, spongebob).

grandparent(linda, amelia).


E− =

{
grandparent(amy , amelia).

}
Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 24 / 35

Tracing Metagol
It select the first example to generalize grandparent(ann, amelia).
It tries to prove it from BK and induced clauses. It fails.
Metagol tries to use the first metarule:

grandparent(ann, amelia) : −Q(ann, amelia).

stores sub(ident, [grandparent, Q])
and tries to unify Q, but fails.
Metagol tries to use the second metarule:

grandparent(ann, amelia) : −Q(ann, C), R(C , amelia).

stores sub(chain, [grandparent, Q, R])
and recursively tries to prove Q(ann, C) and R(C , amelia).
It succeedes with the metasum sub(chain, [grandparent, mother , mother])
and induces the first clause;

grandparent(A, B) : −mother(A, C), mother(C , B).

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 25 / 35

Metagol Trace 2
Then, it select the second example to generalize grandparent(steve, amelia).
It tries to prove it from BK and induced clauses. It fails.
Metagol can again use the second metarule with another substitution:
stores sub(chain, [grandparent, father , mother])
and induces the second clause;

grandparent(A, B) : −father(A, C), mother(C , B).
Given no bound on the program size, the Metagol would prove the other two
examples the same way and form the program:

grandparent(A, B) : − mother(A, C), mother(C , B).
grandparent(A, B) : − father(A, C), mother(C , B).
grandparent(A, B) : − father(A, C), father(C , B).
grandparent(A, B) : − mother(A, C), father(C , B).

In praxis, it learns:
grandparent(A, B) : − grandparent_1(A, C), grandparent_1(C , B).

grandparent_1(A, B) : − father(A, B).
grandparent_1(A, B) : − mother(A, B).

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 26 / 35

Tail Recursive Metarule

Example (Tail Recursive Metarule)
An example is the tail recursive metarule P(A, B)← Q(A, C), P(C , B)
Metagol can also learn mutually recursive programs, such:

even(0).
even(A) : − successor(A, B), even_1(B).

even_1(A) : − successor(A, B), even(B).

We even do not have to provide the concept of an odd number. We can let the
Metagol to invent such predicate (even_1).

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 27 / 35

Automata Example
Mach Learn (2014) 94:25–49 27

(a)

Finite Production Definite Clause
acceptor rules Grammar (DCG)

q0 →
q0 → 0 q0

q0 → 1 q1

q1 → 0 q1

q1 → 1 q0

q0([], []) ←
q0([0|A],B) ← q0(A,B)

q0([1|A],B) ← q1(A,B)

q1([0|A],B) ← q1(A,B)

q1([1|A],B) ← q0(A,B)

(b)

E+ E− Meta-interpreter Ground facts
λ

0
00
11
000
011
101

1
01
10
001
010
100
111

parse(S) ← parse(q0, S, []).

parse(Q, [], []) ← acceptor(Q).
parse(Q, [C|X], Y) ←

delta1(Q,C,P),
parse(P,X,Y).

acceptor(q0) ←
delta1(q0,0, q0) ←
delta1(q0,1, q1) ←
delta1(q1,0, q1) ←
delta1(q1,1, q0) ←

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (E+) and negative
examples (E−), Meta-interpreter and ground facts representing the Parity grammar

blurs the normal distinctions between abductive and inductive techniques (see Flach and
Kakas 2000). Usually abduction is thought of as providing an explanation in the form of a
set of ground facts while induction provides an explanation in the form of a set of universally
quantified rules. However, the meta-interpreter in Fig. 1b can be viewed as projecting the
universally quantified rules in Fig. 1a onto the ground facts associated with acceptor/1 and
delta1/3 in Fig. 1b. In this way abducing these ground facts with respect to a meta-interpreter
is equivalent to induction, since it is trivial to map the ground acceptor/1 and delta1/3 facts
back to the original universally quantified DCG rules.

In this paper, we show that the MIL framework can be directly implemented using declar-
ative techniques such as Prolog and Answer Set Programming (ASP). In this way, the search
for an hypothesis in a learning task is delegated to the search engine in Prolog or ASP. Al-
though existing abductive systems can achieve predicate invention if loaded with the meta-
interpreter introduced in this paper, a direct implementation of MIL has the following ad-
vantages.

1. As a declarative machine learning (De Raedt 2012) approach, it can make use of the
advances in solvers. For example, techniques ASP solvers such as Clasp (Gebser et al.
2007) compete favourably in international competitions. Recently Clasp has been ex-
tended to Unclasp (Andres et al. 2012) which is highly efficiency for optimisation tasks.
This advance is exploited in the experiments of this paper, as we use Unclasp for our
experiments.

2. As demonstrated by the experiments in this paper, direct implementation of the approach
using a meta-interpreter has increased efficiency due to an ordered search in the case of
Prolog and effective pruning in the case of ASP. While existing abductive systems like
SOLAR (Nabeshima et al. 2010), A-System (Kakas et al. 2001) and MC-TopLog do not
have an ordered search, but instead enumerate all hypotheses that are consistent with the
data.

3. The resulting hypotheses achieve higher predictive due to global optimisation, as opposed
to the greedy covering algorithm used in many systems including MC-TopLog.

http://www.doc.ic.ac.uk/~shm/FLOC_ILP/Paper03.pdf

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 28 / 35

Louise Example

Example (Module)
:-module(anbn, [background_knowledge/2

,metarules/2
,positive_example/2
,negative_example/2
,a/2
,b/2
]).

Example (Background knowledge)
background_knowledge(s/2,[a/2,b/2]).
a([a|T],T).
b([b|T],T).

Example (Metarules)
metarules(s/2,[chain]).
% (Chain) ∃.P,Q,R ∀.x,y,z: P(x,y)← Q(x,z),R(z,y)

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 29 / 35

Louise Example Continued

Example (Positive Examples)
positive_example(s/2,E):-

member(E, [%s([a,b],[])
s([a,a,b,b],[])
]).

Example (Negative Examples)
negative_example(s/2,E):-

member(E,[s([a,a],[])
,s([b,b],[])
,s([a,a,b],[])
,s([a,b,b],[])
]).

Example (Parameter Tuning)
:- auxiliaries:set_configuration_option(clause_limit, [3]).
:- auxiliaries:set_configuration_option(max_invented, [1]).
:- auxiliaries:set_configuration_option(unfold_invented, [true]).
:- auxiliaries:set_configuration_option(reduction, [none]).Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 30 / 35

Louise Example Continued 2

Example (Learned Program)
?- learn(s/2).
s(A,B):-a(A,C),b(C,B).
s(A,B):-a(A,C),s(C,D),b(D,B).
true.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 31 / 35

ASPAL algorithm

ASPAL uses Answer Set Programming.
ASP program can have one, many, or none models (answer sets).
Computation in ASP is the process of finding models.
We may specify the range of the number of clauses from a set beeing true.
0{sunny ., weekday ., happy(A) : −lego_builder(A)}3
We may specify an evaluation function to optimize (like to minimize the
number of ’true’ clauses, e.g. the size of the hypothesis.

ASPAL

Generate all possible rules consistent with the given mode declarations.
Assign each rule a unique identifier and add an guessable atom in each
rule.
Use an ASP solver to find a minimal subset of the rules
by formulating the problem as an ASP optimization problem.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 32 / 35

Example (ASPAL)

B =



bird(alice).
bird(betty).

can(alice, fly).
can(betty , swim).

ability(fly).
ability(swim).


M =

 modeh(1, penguin(+bird)).
modeb(1, bird(+bird)).

modeb(∗, not can(+bird , #ability)).


E+ = {penguin(betty).}
E− = {penguin(alice).}

Given the modes, the possible rules are:

penguin(X) : − bird(X).
penguin(X) : − bird(X), not can(X , swim).
penguin(X) : − bird(X), not can(X , fly).
penguin(X) : − bird(X), not can(X , swim), not can(X , fly).

ASPAL replaces constants and adds extra literal:

penguin(X) : − bird(X), rule(r1).
penguin(X) : − bird(X), not can(X , C1), rule(r2, C1).
penguin(X) : − bird(X), not can(X , C1), not can(X , C2), rule(r3, C1, C2).

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 33 / 35

ASPAL passes to an ASP solver:

bird(alice).
bird(betty).
can(alice, fly).
can(betty , swim).
ability(fly).
ability(swim).
penguin(X) : −bird(X), rule(r1).
penguin(X) : −bird(X), not can(X , C1), rule(r2, C1).
penguin(X) : −bird(X), not can(X , C1), not can(X , C2), rule(r3, C1, C2).
0{rule(r1), rule(r2, fly), rule(r2, swim), rule(r3, fly , swim)}4
goal : −penguin(betty), not penguin(alice).
: −not goal .

The answer is: rule(r2, c(fly))
Which is translated to a program:

penguin(A) : −bird(A), not can(A, fly).
Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 34 / 35

ILP aplications

Bioinformatics
ILP can make predictions based on the (sub)structured biological data.
Predict mutagenic activity of molecules and alert the causes of chemical
cancers
learning protein folding signatures.

Robot scientist.
BK knowledge represents the relationship between protein-coding sequences,
enzymes, and metbolites in pathway.
Automatically generates hypotheses, run experiments, iterprets results.

Games
Sokoban
Bridge
Checkers.

Machine Learning Inductive Logic Programming 10 1 - 35 May 2, 2024 35 / 35

Table of Contens
1 Overview of Supervised Learning
2 Kernel Methods, Basis Expansion and regularization
3 Linear Methods for Classification
4 Model Assessment and Selection
5 Additive Models, Trees, and Related Methods
6 Ensamble Methods
7 Bayesian learning, EM algorithm
8 Clustering
9 Association Rules, Apriori
10 Inductive Logic Programming
11 Undirected (Pairwise Continuous) Graphical Models
12 Gaussian Processes
13 PCA Extensions, Independent CA
14 Support Vector Machines

Machine Learning Summary 15 36 - 36 May 2, 2024 35 / 35

	Overview of Supervised Learning
	Kernel Methods, Basis Expansion and regularization
	Linear Methods for Classification
	Model Assessment and Selection
	Additive Models, Trees, and Related Methods
	Ensamble Methods
	Bayesian learning, EM algorithm
	Clustering
	Association Rules, Apriori
	Inductive Logic Programming
	Undirected (Pairwise Continuous) Graphical Models
	Gaussian Processes
	PCA Extensions, Independent CA
	Support Vector Machines
	Summary

