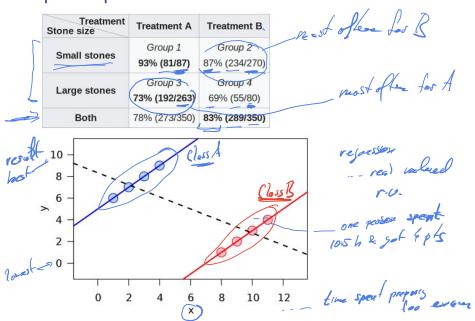
NMAI059 Probability and statistics 1 Class 14

Robert Šámal

Simpson's paradox

clissif problem -- Oll ver.



Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Situation

- $ightharpoonup X_1,\ldots,X_n\sim F_X \ a\ Y_1,\ldots,Y_m\sim F_Y$
- We want to decide between $H_0: F_X = F_Y$ and $H_1: F_X \neq F_Y$.
- Examples: running time of an algorithm before/after modification, cholesterol level in people who do/don't eat Miraculous SuperfoodTM, frequency of short words in text by authors X and Y.
- We do not assume anything about F_X , F_Y (in particular they may not be normal).

Method
$$n=2, m=1$$
 $X_1=1, X_2=9, Y_1=3$
 $\frac{1}{2} \frac{1}{2} \frac{1$

We choose an appropriate statistics, e.g.

$$T(X_1,\ldots,X_n,Y_1,\ldots,Y_m) = |\bar{X}_n - \bar{Y}_m|$$

$$T(X_1,\ldots,X_n,Y_1,\ldots,Y_m) = |\bar{X}_n - \bar{Y}_m|$$

$$T(X_1,\ldots,X_n,Y_1,\ldots,Y_m) = |\bar{X}_n - \bar{Y}_m|$$

Assuming H_0 , "all permutations of the data are the same": X_i i Y_j were generated from the same distribution.

We randomly permute the given m+n numbers and for each permutation we calculate T – we get numbers $T_1, T_2, \ldots, T_{(m+n)!}$ (each equally likely).

As p-value we take the probability that $T>t_{\sf obs}$, or

$$\frac{4}{6} = p = \frac{1}{(m+n)!} \sum_{j} I(T_{j} > t_{\text{obs}}). = \frac{\# f_{j} : T_{j} > t_{\text{obs}}}{(m+\alpha)!}$$

This is the probability of Type I error. We reject H_0 whenever $p < \alpha$ (for our choice of α , e.g. $\alpha = 0.05$).

Improvement

- Enumerating all permutations can be too expensive. Instead, we take just an appropriate number B of independently generated permutations and calculate just B values T_1, \ldots, T_B .
- As p-value we take the estimate of the probability that $T > t_{\text{obs}}$, or

$$\frac{1}{B} \sum_{j=1}^{B} I(T_j > t_{\text{obs}}).$$

► For sufficiently large m, n this gives similar results as tests based on CLT. So it is useful especially for medium sized samples.

Overview

Permutation test

Resampling

Bootstrap

Bayesian statistics

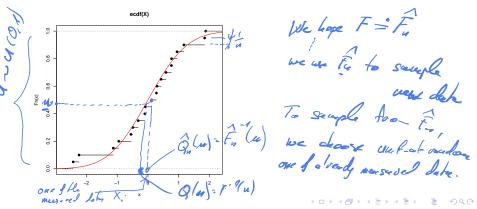
Sampling random variables

Empirical CDF – a reminder

- $ightharpoonup X_1, \ldots, X_n \sim F$ i.i.d., F is their CDF
- ▶ **Definition:** Empirical CDF is defined by

$$\widehat{F}_n(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n},$$

where $I(X_i \le x) = 1$ if $X_i \le x$ and 0 otherwise.



Boostrap - basic idea

- from the measured data $X_1 = \underline{x_1}, \dots, X_n = x_n \sim F$ we create \widehat{F}_n
- lacktriangle other data can be sampled from \widehat{F}_n
- b to do this we select a uniformly random $i \in \{1, \dots, n\}$ and outputing x_i

Bootstrap – basic usage

perhaps coeff of live organisan

- $ightharpoonup T_n = g(X_1, \dots, X_n)$ some statistics (function of the data)
- \blacktriangleright we want to estimate $var(T_n)$
- ▶ sample $X_1^*, \dots, X_n^* \sim \widehat{F}_n$ (see last slide)
- ightharpoonup calculate $T_n^* = g(X_1^*, \dots, g_n^*)$
- ► repeat B times to get $T_{n,1}^*, \dots, T_{n,B}^*$ ► the variance estimate:

$$\frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{k=1}^{B} T_{n,k}^* \right)^2$$

var (Tn) ~ var (Tn)
when you have 5 when sompled for f

Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Two approaches to statistics

Frequentists'/classical approach

- Probability is a long-term frequency (out of 6000 rolls of the dice, a six was rolled 1026 times). It is an objective property of the real world.
- Parameters are fixed, unknown constants. We can't make meaningful probabilistic statements about them.
- We design statistical procedures to have desirable long-run properties. E.g. 95 % of our interval estimates will cover the unknown parameter.

Bayesian approach

- Probability describes how much we believe in a phenomenon, how much we are willing to bet. (Prob. that T. Bayes had a cup of tea on December 18, 1760 is 90 %.) (Prob. that COVID-19 virus did leak from a lab is ?50? %.)
- ► We can make probabilistic statements about parameters (even though they are fixed constants).
- We compute the distribution of ϑ and form point and interval estimates from it. etc.

200 c/c,63

- We choose *prior distribution*, the pmf $p_{\Theta}(\vartheta)$ or the pdf $f_{\Theta}(\vartheta)$ independent of the data.
- We choose a statistical model $f_{X|\Theta}(x|\vartheta)$ that describes what we measure (and with what probability), depending on the value of the parameter.
- After we observe X = x, we compute the *posterior* using distribution $f_{\Theta|X}(\overline{\vartheta|x})$ \longrightarrow $P_{\Theta|X}(-\vartheta|x)$
- and then derive what we need e.g. find a, b so that

Hypoth fast if
$$P(\theta = 0) = 0$$
 (Hois $\theta = 0$)

 $\theta = \theta$ lower-case theta, Θ is upper-case theta

Bayes theorem PROLEM P(R.IN) = P(R.I

Theorem (Bayes theorem for discrete r.v.s)

$$X, \Theta$$
 are discrete r.v.'s

$$X,\Theta \text{ are discrete r.v.'s}$$

$$P(\mathcal{C}^{-\mathcal{D}} \mid X^{-\mathcal{D}}) \qquad P_{\mathcal{C}}(x|\theta) p_{\Theta}(\theta)$$

Theorem (Bayes theorem for continuous r.v.'s)

 X, Θ are continuous r.v.'s with pdf's f_X, f_{Θ} and joint pdf $f_{X,\Theta}$

$$f_{\Theta|X}(\vartheta|x) = \frac{f_{X|\Theta}(x|\vartheta)f_{\Theta}(\vartheta)}{\int_{\vartheta' \in \mathbb{R}} f_{X|\Theta}(x|\vartheta')f_{\Theta}(\vartheta')d\vartheta'}.$$

(terms with $f_{\Theta}(\vartheta') = 0$ with $f_{\Theta}(\vartheta') = 0$ are considered 0).

Two more variants omitted.

Bayesian point estimates – MAP and LMS

MAP – Maximum A-Posteriori We choose $\hat{\vartheta}$ to maximize

- $ightharpoonup p_{\Theta|X}(\vartheta|x)$ in the discrete case
- $f_{\Theta|X}(\vartheta|x)$ in the continuous case
- Similar to the ML method in the classical approach if we choose a "flat prior" Θ is supposed to be uniform/discrete uniform.

LMS – Least Mean Square Also the conditional mean method.

- We choose $\hat{\vartheta} = \mathbb{E}(\Theta \mid X = x)$.
- Unbiased point estimate, takes the smallest possible walve.

15 court: Ase K1, K2 - undependent?

15 cont - we real to know joint distri-

Bayesian spam classifier: 1 (K)

- create a list of suspicious words (money, win, pharmacy, . . .)
- R.v. X_i describes whether the email contains the suspicious word w_i .
- ▶ R.v. Θ describes whether the email is spam $\Theta = 1$ or not $\Theta = 0$
- From the previous emails, we get estimates of $p_{X|\Theta}$ and p_{Θ}
- ▶ We use Bayes' theorem to calculate $p_{\Theta|X}$

Po (0) - Pool - of non-spous

Romeo and Juliet are to meet at noon sharp. But Juliet is late by the time described by the random variable $X \sim U(0, \vartheta)$. We model the parameter ϑ by the random variable $\Theta \sim U(0, 1)$. What do we infer about ϑ from the measured value of X=x?

prior disto.
$$f_{\theta}(\vartheta)=1$$
 for $\vartheta\in[0,3]$

$$f_{X|\theta}(x|\vartheta): \frac{1}{\vartheta} \text{ for } x\in[0,\vartheta]$$

$$\vartheta \text{ outse by df.}$$

$$f_{X|\theta}(\vartheta|\vartheta): \frac{1}{\vartheta} \text{ for } x\in[0,\vartheta]$$

$$\vartheta \text{ outse by df.}$$

$$f_{X|\theta}(\vartheta|\vartheta): \frac{1}{\vartheta} \text{ for } x\in[0,\vartheta]$$

$$\vartheta \text{ outse by df.}$$

$$f_{X|\theta}(\vartheta|\vartheta): \frac{1}{\vartheta} \text{ for } x\in[0,\vartheta]$$

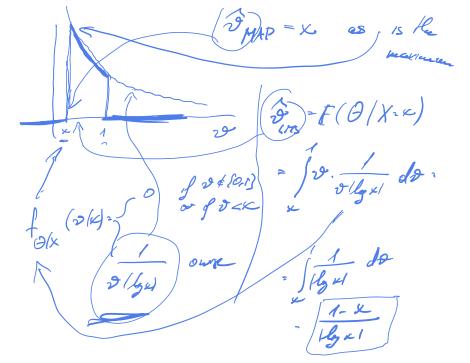
$$\varphi \text{ outse by df.}$$

$$f_{X|\theta}(\vartheta|\vartheta): \frac{1}{\vartheta} \text{ for } x\in[0,\vartheta]$$

$$\varphi \text{ outse by df.}$$

$$\varphi \text{ outse by df.}$$

$$\varphi \text{ outse bounds: } \vartheta \text{ outse for } \vartheta \text$$



Observing random variables $X=(X_1,\ldots,X_n)$, assume $X_i\sim N(\vartheta,\sigma_i^2)$ and ϑ is the value of the random variable $\Theta\sim N(x_0,\sigma_0)$. What can we conclude about ϑ from the measured values $X=x=(x_1,\ldots,x_n)$?

We flip a coin, the probability of getting heads is ϑ . Out of n flips, the coin comes up heads in X=k cases. If our a priori distribution was U(0,1), what would be the distribution of the posterior distribution?

Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Basic method – inverse transformation method

Theorem

Let F be a function "of CDF-type": nondecreasing right-continuous function with $\lim_{x\to -\infty} F(x)=0$ a $\lim_{x\to +\infty} F(x)=1$.

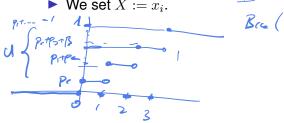
Let Q be the corresponding quantile function.

Let $U \sim U(0,1)$ and X = Q(U). Then X has CDF F.

- It works well if we can quantify Q, for example for exponential or geometric distributions.
- The gamma distribution is the sum of several exponential distributions – so we generate it that way.

Variant of the basic method for discrete variables

- ▶ We want a r.v. X that takes values $x_1, x_2, ...$ with probabilities $p_1, p_2, \ldots (\sum_i p_i = 1)$.
- ▶ We generate $U \sim U(0,1)$.
- Find i such that $p_1 + \cdots + p_{i-1} < U < p_1 + \cdots + p_i$.
- \blacktriangleright We set $X := x_i$.



- \blacktriangleright Works nicely when we have a formula for $p_1 + \cdots + p_i$ (e.g. geometric distribution).
- The binomial distribution is better simulated as the sum of n independent Bernoulli variables.
- There are special tricks for other ones (Poisson).

Rejection sampling

- ▶ We want to generate a r.v. with density f.
- We can generate a r.v. with density g (which is "similar"), namely
- $\frac{f(y)}{g(y)} \le c$ for some constant c.

- The method:
 - ne metriou.

 1. Generate Y with density g, and $U \sim U(0,1)$.
 - 2. If $U \leq \frac{f(Y)}{cg(Y)}$, then X := Y.
 - 3. Otherwise, reject the value of Y, U and repeat from point 1.
- Rationale: generating a random value of X with density f is the same as generating a random point under the graph of the function f whose horizontal (x) coordinate is X (and whose vertical coordinate is uniformly random between 0 and X

c Ug(4) = f(4)

Follow-up classes

- → Probability and Statistics 2 NMAI073
- Introduction to Approximation and Randomized AlgorithmsNDMI084
 - Introduction to Machine Learning in Python|R NPFL129|NPFL054
 - and many master-level lectures