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Simpson’s paradox
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Overview

Permutation test



Situation

» We have two collections of pairwise independent r.v.’s
(random samples): - — LS eupl o/

» X1,...,. X, ~FxaYy,...,Y,, ~ Fy

» We want to decide between Hy : F'y = Fy and
H1 : FX 7§ Fy.

» Examples: running time of an algorithm before/after
modification, cholesterol level in people who do/don’t eat
Miraculous Superfood™, frequency of short words in text
by authors X and Y.

== We do not assume anything about Fx, Fy (in particular
they may not be normal).
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ssuming Hy, ,all permutations of the data are the same*:
X;1Y; we'ﬁgenerated from the same distribution.

gq

We randomly permute the given m -+ n numbers and for
each permutation we calculate 7' — we get numbers

11, Ty, ..., Tmin)y (ach equally likely).

> As p-value we take the probability that T" > t4ps, OF

» This is the probability of Type | error. We reject Hy

whenever p < « (for our choice of «, e.g. a = 0.05).
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Improvement /\f L Z‘)
» Enumerating all permutations be too expensive.
Instead, we take just an appropriate mberBof

independently generated permutations’and calculate just
Bvalues T, ..., Tg.
> As p-value we take the estlmate of the probability that

T > tobs, or
— o

1 B
ZI (T} > tobs)-
]:1

» For sufficiently large m, n this gives similar results as tests
based on CLT. So it is useful especially for medium sized
samples.
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Bootstrap







Empirical CDF — a reminder

» Xy,...,X, ~Fiid., Fis their CDF
» Definition: Empirical CDF is defined by
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where I(X; < z) = 1if X; <z and 0 otherwise.
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Boostrap — basic idea

» from the measured data X; = z1,..., X, =z, ~ F we
create I,

» other data can be sampled from E,

» to do this we select a uniformly random i € {1,...,n} and
outputieg x; =
—






Bootstrap — basic usage s = f de- ogpretsm

» T, =g(Xi1,...,X,) some statistics((function of the data)
> we want to estimate var(T),)

> sample X},..., X’ ~ F, (see last slide)

» calculate 7)) = g(X7, .,.-.-,g;i)

> repeat B times to getTy,,... ,T;:}

> the variance estimate:
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Overview

Bayesian statistics



Two approaches to statistics 28 = +

Frequentists’/classical approach

» Probability is a long-term frequency (out of 6000 rolls of
the dice, a six was rolled 1026 times). It is an objective
property of the real world.

» Parameters are fixed, unknown constants. We can’t make
meaningful probabilistic statements about them.

» We design statistical procedures to have desirable
long-run properties. E.g. 95 % of our interval estimates will
cover the unknown parameter.

Bayesian approach

» Probability describes how much we believe in a
phenomenon, how much we are willing to bet. (Prob. that
T. Bayes had a cup of tea on December 18, 1760 is 90 %.)
(Prob. that COVID-19 virus did leak from a lab is 7507 %.)

» We can make probabilistic statements about parameters
(even though they are fixed constants).

» We compute the distribution of ©) and form point and
interval estimates from it. etc.





Bayesian method — basic description
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The unknown parameter is treated as a random variable ©
We choose prior distribution, the pmf pg(J) or the pdf

. — ——
fe(?) independent of the data. - (6 1)

We choose a statistical model fx|e(z|?9) tha deséribes
what we measure (and with what probability), depending
on the value of the parameter.

After we observe X = x, we compute the posterior” i s
distribution fo|x (9[x) .~ Py (9%2)
and then derive what we need e.qg. find a, b so th

= f; fox(Wz)dd > 1~ tufors) s fre heene
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> J = 0 lower-case theta, © is upper-case theta
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Theorem (Bayes theorem for discrete r.v:

X, © are discrete r.v.’s
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(terms with po(¥') =0 are considered to be 0).
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Theorem (Bayes theorem for continuous r.v.s)

X, © are continuous r.v.’s with pdf’s fx, fe and joint pdf fx e
fo (o) — X1 GNTo@)

olx fﬁ/eR fX|9(x|19/)f@(19,>d79,

(terms with fo(¥') = 0 with fo(¥') = 0 are considered 0).

» Two more variants omitted.






Bayesian point estimates — MAP and LMS

MAP — Maximum A-Posteriori We choose 9 to maximize -
" - 288

choose a ,flat prior” — © is supposed to (&4 soar,
uniform/discrete uniform. EA "“Sqa,/c,é)
e s

LMS — Least Mean Square Also the conditional mean
method.

> We choose ) =E(© | X = z).
— e
» Unbiased point estimate, takes the smallest possible-s#S «
value, M — Meor 55 emarr
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Bayesian spam classifier: § (%%
> create a list of suspicious words (money, win, pharmacy,
)
» R.v. X; describes whether the email contains the
—
suspicious word w;.
» R.v. © describes whether the email is spam © = 1 or not
0 =0. ,j’”"”
» From the previous emails, we get estimates of pxje and pe
> We use Bayes’ theorem to calculate pe|x -
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Example 1





Example 2

Romeo and Juliet are to meet at noon sharp. But Juliet is late
by the time described by the random variable X ~ U(0, ¢). We

model the parameter ¢ by the ran variabJ; 0~U EO, 1).
What do we infer about ¢ from {Hie measured value of X = z?
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Example 3

Observing random variables X = (X;,..., X,,), assume
X; ~ N(¥9,0?) and 9 is the value of the random variable
© ~ N(zg,00). What can we conclude about ¢ from the
measured values X =z = (z1,...,2,)?



Example 4

We flip a coin, the probability of getting heads is . Out of n
flips, the coin comes up heads in X = k cases. If our a priori
distribution was U (0, 1), what would be the distribution of the
posterior distribution?



Overview

Sampling random variables



Basic method — inverse transformation method

Theorem

Let F' be a function “of CDF-type”: nondecreasing
right-continuous function with lim,_, ., F(x) =0 a
lim, 400 F(x) = 1.

Let Q be the corresponding quantile function.

LetU ~ U(0,1) and X = Q(U). Then X has CDF F.

e ek —
> It works well if we can quaskfy @, for example for

exponential or geometric distributions.

» The gamma distribution is the sum of several exponential
distributions — so we generate it that way.








Variant of the basic method for discrete variables

> We want a r.v. X that takes values x1, zo, ... with
probabilities pi,pa,.... (>, pi = 1).
» We generate U ~ U(0, 1).

» Find ¢ such that p; + - - ipz 1<U<p1+

> We set X = ;.

ik QL)

» Works nicely when we have a formula for p; + - - - + p; (e.g.
geometric distribution).

» The binomial distribution is better simulated as the sum of
n independent Bernoulli variables.

» There are special tricks for other ones (Poisson).







Rejection samplin "
ey 1ol

» We want to generate ar.v. with density f

namely
fl)
> o) < ¢ for some constant c. éﬂ

> ﬁe method:
. Generate Y with density g, and U ~ U(0, 1). e U (;j o/
2 If U < Z05 then X = V. "_— [K' v )/w
3. Gtﬁerwﬁl reject t the value of Y, U and repeat from pomﬁﬁ

» Rationale: generating a random value of X with density f
is the same as generating a random point under the graph
of the function f whose horizontal (x) coordinate is X (and
whose verti ordinate is uniformly random between 0

and aéﬁé;
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Follow-up classes

——> Probability and Statistics 2 — NMAI073

——» Introduction to Approximation and Randomized Algorithms
— NDMI084

» Introduction to Machine Learning in Python|R —
NPFL129|NPFL054

» and many master-level lectures
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