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Simpson’s paradox

Treatment

Stone size Treatment A Treatment B

Group 1 Group 2
93% (81/87) | 87% (234/270)

Small stones

Group 3 Group 4

Large stones
73% (192/1263) 69% (55/80)

Both 78% (273/350)  83% (289/350)




Overview

Permutation test



Situation

>

| 2
>

We have two collections of pairwise independent r.v.s
(random samples):

Xi,...,Xn~FxaYy,...,Yy ~ Fy

We want to decide between Hy : Fx = Fy and

H1 : FX 7§ Fy.

Examples: running time of an algorithm before/after
modification, cholesterol level in people who do/don’t eat
Miraculous Superfood™, frequency of short words in text
by authors X and Y.

We do not assume anything about Fx, Fy (in particular
they may not be normal).



Method

» We choose an appropriate statistics, e.g.
T( X1, X, Y1, Vo) = | X — Vi

> tObS = T(Xl, e ,Xn,Yl, v ,Ym)

» Assuming Hy, ,all permutations of the data are the same*:
X; i Y; were generated from the same distribution.

» We randomly permute the given m + n numbers and for
each permutation we calculate 7' — we get numbers
T1, Tz, ..., Tmn) (€ach equally likely).

> As p-value we take the probability that T > ¢4y, OF

p= (mj—n)';I(TJ > tobs)-

» This is the probability of Type | error. We reject Hy

whenever p < « (for our choice of «, e.g. a = 0.05).



Improvement

» Enumerating all permutations can be too expensive.
Instead, we take just an appropriate number B of
independently generated permutations and calculate just
Bvalues T, ..., Tx.

> As p-value we take the estimate of the probability that

T > tobs, or
B
Z T > tobs

» For sufficiently large m, n this gives similar results as tests
based on CLT. So it is useful especially for medium sized
samples.



Overview

Bootstrap



Empirical CDF — a reminder

» Xy,...,X, ~Fiid., Fis their CDF

» Definition: Empirical CDF is defined by
_ >is 1(X; <)
= - ,

where I(X; < z) = 1if X; <z and 0 otherwise.

ecdf(X)




Boostrap — basic idea

» from thgmeasured data X1 ==z1,...,. X, =2, ~ F we
create I,

» other data can be sampled from E,

» to do this we select a uniformly random i € {1,...,n} and
outputing x;



Bootstrap — basic usage

>

vVvYyyVvyy

T, =g(X1,...,X,) some statistics (function of the data)
we want to estimate var(T,,)

sample X?,..., X’ ~ F, (see last slide)

calculate 7)) = g(X7¥,...,q})

repeat B times to get 75, ,,..., 1, 5

the variance estimate:

1 B 1 B 2
52 (T 52T
b=1 k=1



Overview

Bayesian statistics



Two approaches to statistics

Frequentists’/classical approach

» Probability is a long-term frequency (out of 6000 rolls of
the dice, a six was rolled 1026 times). It is an objective
property of the real world.

» Parameters are fixed, unknown constants. We can’t make
meaningful probabilistic statements about them.

» We design statistical procedures to have desirable
long-run properties. E.g. 95 % of our interval estimates will
cover the unknown parameter.

Bayesian approach

» Probability describes how much we believe in a
phenomenon, how much we are willing to bet. (Prob. that
T. Bayes had a cup of tea on December 18, 1760 is 90 %.)
(Prob. that COVID-19 virus did leak from a lab is 7507 %.)

» We can make probabilistic statements about parameters
(even though they are fixed constants).

» We compute the distribution of ©) and form point and
interval estimates from it. etc.



Bayesian method — basic description

» The unknown parameter is treated as a random variable ©

» We choose prior distribution, the pmf pg () or the pdf
fo(¥) independent of the data.

> We choose a statistical model fx g (z[17) that describes
what we measure (and with what probability), depending
on the value of the parameter.

» After we observe X = x, we compute the posterior
distribution fex (V|r)

» and then derive what we need e.qg. find a, b so that
12 fox W|z)dd > 1 -«

> 9 = 0 lower-case theta, © is upper-case theta



Bayes theorem

Theorem (Bayes theorem for discrete r.v.’s)
X, © are discrete r.v.'s

e (0la) — _Px1e(@l?re(?)
o > werme Pxje (@ )pe ()
(terms with po (') = 0 are considered to be 0).

Theorem (Bayes theorem for continuous r.v.’s)
X, © are continuous r.v.’s with pdf's fx, fe and joint pdf fx e

forx(¥)z) = fxje(@]9) fo (V)
o Jyer fxjo(z]9) fo(9")dd"
(terms with fe (V") = 0 with fe(9') = 0 are considered 0).

» Two more variants omitted.




Bayesian point estimates — MAP and LMS

MAP — Maximum A-Posteriori We choose 1 to maximize
> pe|x (V]x) in the discrete case
> foix(J|z) in the continuous case

» Similar to the ML method in the classical approach if we
choose a ,flat prior” — © is supposed to be
uniform/discrete uniform.

LMS — Least Mean Square Also the conditional mean
method.

> We choose ¥ =E(© | X = z).

» Unbiased point estimate, takes the smallest possible LMS
value.



Example 1

Bayesian spam classifier:
» create a list of suspicious words (money, win, pharmacy,

L)
> R.v. X; describes whether the email contains the
suspicious word w;.

» R.v. © describes whether the email is spam © = 1 or not
O =0.

» From the previous emails, we get estimates of pxje and pe

> We use Bayes’ theorem to calculate pg x



Example 2

Romeo and Juliet are to meet at noon sharp. But Juliet is late
by the time described by the random variable X ~ U(0, ¢). We
model the parameter ¥ by the random variable © ~ U (0, 1).
What do we infer about ¢ from the measured value of X = z?



Example 3

Observing random variables X = (X;,..., X,,), assume
X; ~ N(¥9,0?) and 9 is the value of the random variable
© ~ N(zg,00). What can we conclude about ¢ from the
measured values X =z = (z1,...,2,)?



Example 4

We flip a coin, the probability of getting heads is . Out of n
flips, the coin comes up heads in X = k cases. If our a priori
distribution was U (0, 1), what would be the distribution of the
posterior distribution?



Overview

Sampling random variables



Basic method — inverse transformation method

Theorem

Let F' be a function “of CDF-type”: nondecreasing
right-continuous function with lim,_, ., F(x) =0 a
lim, 400 F(x) = 1.

Let Q be the corresponding quantile function.

LetU ~ U(0,1) and X = Q(U). Then X has CDF F.

» It works well if we can quantify @, for example for
exponential or geometric distributions.

» The gamma distribution is the sum of several exponential
distributions — so we generate it that way.



Variant of the basic method for discrete variables

> We want ar.v. X that takes values z1, zo, ... with
probabilities pi,pa,.... (>, pi = 1).

» We generate U ~ U(0, 1).

Findisuchthatp; + - - +pi1 <U <p1+-- +pi.

> We set X = z;,.

v

» Works nicely when we have a formula for p; + - - - + p; (e.g.
geometric distribution).

» The binomial distribution is better simulated as the sum of
n independent Bernoulli variables.

» There are special tricks for other ones (Poisson).



Rejection sampling

>
>

We want to generate a r.v. with density f.

We can generate a r.v. with density ¢ (which is ,similar),
namely

fy)
Tty < ¢ for some constant c.

The method:

1. Generate Y with density g, and U ~ U(0, 1).

2. fU <[5 then X = V.

3. Otherwise, reject the value of Y, U and repeat from point 1.
Rationale: generating a random value of X with density f
is the same as generating a random point under the graph
of the function f whose horizontal (x) coordinate is X (and
whose vertical coordinate is uniformly random between 0
and X).



Follow-up classes

» Probability and Statistics 2 — NMAIO73

» Introduction to Approximation and Randomized Algorithms
— NDMI084

» Introduction to Machine Learning in Python|R —
NPFL129|NPFL054

» and many master-level lectures



	Permutation test
	Bootstrap
	Bayesian statistics
	Sampling random variables

