APPENDIX TO SECTION S

Procedure eigen. Let ¢ be a prime and let 1 < « < . Suppose that the goal
is to decide whether ~ is the eigevalue of a Frobenius endomorphism when the
latter is restricted to E[¢]. It is assumed that char(K') does not divide ¢. Therefore
E[f) 2 Z¢ X Zy is a vector space over Z; that is of dimension two.

To decide whether there exists P = («, 8) € E[{]* such that ¢(P) = [y]P rests
upon the possibility to express [7]P as (o — ¢y (a)/dy (), Bry () /s, (), where ¢,
d-, v and s, are polynomials in variable .

The existence of P € E[¢]* for which ¢(P) and [y]P coincide in the first coordi-
nate depends upon

Ge = ged(dyx? — zdy + ¢y, fo)-
If go # 1, then for each root « of gy there exists P = (a, 8) € E[¢]* such that a?,
which is the first coordinate of ¢(P), is equal to o — ¢ () /d (), which is the first
coordinate of [y](P). If g, = 1, then ~ is not an eigenvalue. Assume gy # 1.

To see if for any a which is a root of g, there exists 8 such that P = («, ) €
E[{] and ¢(P) agrees with [y]P in the second coordinate too, the equation 57 =
Br.(a)/s,(a)) has to be verified. Since 897! = (a®+aa+b)@1/2  the verification
of v being an eigenvalue finishes by the test of

god((2® + az +b) "7 5,(2) = 14(2), G-

Degree of gy. Suppose that v is an eigenvalue. Then the number of roots of gy
is twice the number of P € E[{]* such that ¢(P) = [£7]P. The characteristic
polynomial T2 — t,T + ¢, may be equal to (T — ~)2. In such a case §, = f, since
every element of E[¢]* is mapped by ¢ to [y]P.

Let T?—t,T+q, # (T—)?. Then ¢ possesses besides v another eigenvalue, say \.
The existence of P € E[{]* with ¢(P) = [—7]P is thus equivalent to A = —~. Since
A # 7, the eigenspaces of A and v are of dimension one. Hence deg(g¢) = (¢ —1)/2
if A\ # —y and deg(ge) = q¢—1if A = —.

In Schoof’s algorithm the situation A = —v does not occur since in such a case
the characteristic polynomial is equal to (T'—v)(T + ) = T —+?, and that implies
ty = 0. However, the procedure eigen is called in Schoof’s algorithm only after it
has been verified that ¢, # 0.

Two approaches to the procedure tyzero. The procedure is called in the
situation when it is known that there exists P = («a, 3) € E[{]* such that ¢?(P)
and [g¢] P agree in the first coordinate. The equality t, = 0 takes place if and only
if p2(P) = [~q)P for each P € E[f]. However, for this to hold it suffices to find
just one P € E[{]* for which ©?(P) = [—q]P.

If ©2(P) and [—q/]P always agree, then —3% = fr,,(@)/sq, () for cach P =
(o, B) € E[f]*. The respective polynomial has to be thus divisible by f,. If that
divisibility takes place, then the second coordinate of ¢?(P) and [—q/|(P) agrees
for all P € E[{]*, and thus also for an element P for which the first coordinate of
©2(P) and [—q/|(P) agrees. Since the existence of such P is known, ¢, = 0, and
©%(P) = [~q] P for every P € E[f]. However, to make this conclusion requires that
fo divides the polynomial that expresses the agreement in the second coordinate.
In this case it does not suffice to verify the existence of a nontrivial common divisor.

An alternative approach is to store ged(5y, f¢). Denote it by gy, like in the main
text. If deg(ge) < deg(fe), then t, # 0 because roots of g, are those a for which
there exists 3 such that P = (o, 8) € E[¢]* and ¢?(P) agrees with [g,] P in the first
coordinate. If t, = 0, then the agreement is true for all P € E[{].

However, the test deg(gs) < deg(f¢) does not have to be done. The main idea of
the alternative approach is that instead of testing the divisibility of the polynomial
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that expresses the agreement of ¢?(P) and [—q.](P) in the second coordinate, it
suffices to test the existence of a common nontrivial divisor of that polynomial
with gy. Indeed, for each root « of such a common divisor there exists 3 such that
P = (o, B) is in E[f], and ©?(P) agrees with [—q,](P) in both coordinates.

Why g, and g, agree. Suppose that g, = gcd(5y, f¢) > 1 and t; # 0. In such a
case T is chosen so that 72 = 4¢, mod /. Set v = 2q,/7. As has been explained in
Section I, either v or —v is an eigenvalue of ¢ (relative to E[¢]). At this point of
Schoof’s algorithm it is already known that ¢, # 0. Hence only one of v and — is
the eigenvalue.

Roots of g, (which is defined with respect to the eigenvalue +y) are those «,
for which there exists S such that P = («, ) € E[{]* and ¢[P] agrees with [+7]P
in the first coordinate. If this happens, then ¢?(P) = [y2|P = [4¢} /%P = [q/]P.
Hence « is also a root of gy, and g, divides gy.

Indeed, roots of gy are those « for which there exists P = («, 8) € E[¢]* such that
©?(P) and [qe] P agree in the first coordinate. This means that ¢?(P) = [dq.]P.
Since ty # 0, there is no P with p?(P) = [—q,]P. Hence only the case of p?(P) =
[q¢e] P may take place. If o(P) = [£~]P for every P € E[{], then ©*(P) = [g/| P for
every P € E[(]. In such a case gy = go = fy. For the rest we may thus assume
the existence of an eigenvalue \ # +v. Hence \?> # 72, Both A\? and 72 = ¢, are
eigenvalues of ¢?(P). There cannot be A2 = —v2 since ¢?(P) = [—q,] P never takes
place. Therefore both ¢, and g, are of degree (¢ —1)/2. That implies that they are
equal (up to a scalar multiple).



