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Non-meromorphic example

Not all functions are meromorphic (e.g. z 7→
√

z). Today we will look at the
coefficient asymptotics of an important class of non-meromorphic functions.

Let us consider, for α ∈ R, the function

fα(z) =
1

(1− z)α
.

Clearly, it is analytic in 0, hence it has an expansion fα(z) =
∑∞

n=0 anzn. What can
we say about the asymptotics of its coefficients an as n→∞?

For α ∈ Z≤0 = {0,−1,−2,−3, . . . }, fα is a polynomial of degree −α, hence its
coefficients are eventually 0. From now on, assume α ∈ R \ Z≤0.

Fact (Generalized binomial theorem)

fα(z) = (1− z)−α =
∞∑

n=0

(−α
n

)
(−1)nzn,

where for x ∈ R and n ∈ N0 we define(x
n

)
=

x(x − 1)(x − 2) · · · (x − n + 1)

n!
.

Goal: Figure out the asymptotics of
(−α

n

)
(−1)n as n→∞.
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Simple cases

Recall the goal: Figure out the asymptotics of
(−α

n

)
(−1)n as n→∞.

Note: (−α
n

)
(−1)n =

(−α)(−α− 1) · · · (−α− n + 1)

n!
(−1)n

=
(n − 1 + α)(n − 2 + α) · · · (1 + α)α

n!

=
(n − 1 + α

n

)
.

Observe: For α ∈ N, fα(z) = 1
(1−z)α is actually meromorphic, and we have

(n − 1 + α

n

)
=
(n − 1 + α

α− 1

)
=

(n + α− 1)(n + α− 2) · · · (n + 1)

(α− 1)!

=
nα−1

(α− 1)!

(
1 + O

(
1
n

))
.

Can we say something similar for α 6∈ Z?
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Euler’s Gamma function

Definition

For a complex number α with <(α) > 0, define the function

Γ(α) =

∫ +∞

0
xα−1e−xdx .

Fact: The above integral converges for any α with <(α) > 0. The function Γ has an
analytic continuation into a meromorphic function on C, with a pole of order 1 in
every m ∈ Z≤0 and no other poles.

Proposition

The function Γ has the following properties:
1 Γ(1) = 1
2 For α 6∈ Z≤0: Γ(α+ 1) = αΓ(α)

3 For n ∈ N: Γ(n) = (n − 1)!

4 For n ∈ N and α ∈ R \ Z≤0:
(n+α−1

n

)
= Γ(n+α)

Γ(n+1)Γ(α)

5 Γ( 1
2 ) =

√
π
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Proof of the proposition
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More on the Γ function

Fact (Generalized Stirling approximation)

For x ∈ R, we have

Γ(x + 1) = xΓ(x) =
√
2πx

( x

e

)x (
1 + O(x−1)

)
as x → +∞.

Corollary

Recall that fα(z) = 1
(1−z)α and that

[zn]fα(z) =
(n + α− 1

n

)
=

Γ(n + α)

Γ(α)Γ(n + 1)
.

For α ∈ R \ Z≤0, as n→ +∞, we have

[zn]fα(z) = [zn]
1

(1− z)α
=
(n + α− 1

n

)
=

Γ(n + α)

Γ(α)Γ(n + 1)
=

nα−1

Γ(α)

(
1 + O

(
1
n

))
.

Corollary

Let γ ∈ R \ {0} and α ∈ R. Define g(z) = 1
(1−γz)α . Then

[zn]g(z) = γn[zn]fα(z) =
γnnα−1

Γ(α)

(
1 + O

(
1
n

))
.
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Binary trees

A binary tree is either a single leaf node, or an internal root node together with an
ordered pair of subtrees, which are both binary trees. Let tn be the number of binary
trees with n internal nodes. What can we say about the asymptotics of tn?
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Binary trees
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Functions approximating fα

Fact

Let ρ > 1, let α ∈ R \ Z≤0. Let f be a function defined on Ω = N<ρ(0) \ [1,+∞) as

f (z) =
g(z)

(1− z)α
,

where g(z) is analytic on N<ρ(0) and g(1) 6= 0. Then

[zn]f (z) = g(1)

(
1 + O

(
1
n

))
[zn]

1
(1− z)α

=
g(1)nα−1

Γ(α)

(
1 + O

(
1
n

))
.
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2-regular graphs

Let gn be the number of 2-regular graphs on the vertex set [n]. What can we say
about the asymptotics of gn?
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