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I. Ingredients of Schoof’s algorithm and its main idea

Let E be a projective elliptic curve over Fq. By Hasse’s theorem, |E(Fq)| =
q − t+ 1, where |t| ≤ 2

√
q. A related fact states that

ϕ2 	 [t]ϕ⊕ [q] = O, (I.1)

where ϕ stands for the Frobenius endomorphism of E.
To explain the meaning of (I.1) let us start with the meaning of ϕ. If P =

(α1 : α2 : α3) ∈ E, then ϕ(P ) = (αq1 : αq2 : αq3) ∈ E too. To see this consider
the equation, say w(X1, X2, X3) = 0, that determines E. If w(α1, α2, α3) = 0,
then 0 =

(
w(α1, α2, α3))q = w(αq1, α

q
2, α

q
3). For example if E is given by a smooth

Weierstraß curve y2 = x3 + ax + b and P = (α, β) ∈ E, then ϕ(P ) = (αq, βq).
Indeed β2q = (β2)q is equal to α3q +aαq + b = (α3 +aα+ b)q, as aq = a and bq = b.

The Frobenius endomorphism ϕ sends points of E upon the points of E. Equa-
tion (I.1) implicitly uses the fact that ϕ is also an endomorphism of the group
E(F̄q), i.e. that ϕ(P ⊕ Q) = ϕ(P ) ⊕ ϕ(Q) for all P,Q ∈ E. This can be proved
from the addition formulas. However, this is also a consequence of a more general
fact that is explained below when introducing the notion of isogeny.

Equation (I.1) thus means that if three endomorphisms of E(F̄q), i.e., P 7→
ϕ2(P ), P 7→ [−t](ϕ(P )) and P 7→ [q]P , are summed up, then the result is the
trivial endomorphism P 7→ O. This can also be expressed as

ϕ2(P )	 [t]ϕ(P )⊕ [q]P = O for every P ∈ E. (I.2)

In fact, the latter form occurs in literature more often than (I.1). However, it may
be argued that the expression via (I.1) is more instructive since it conveys better
the fact that we are dealing with a property of the group E(F̄q). This is important
since the structure of the group does not change under birational equivalence.

It is usual to call T 2 − tT + q the characteristic polynomial of the Frobenius
endomorphism and t the trace of the Frobenius endomorphism. Here T stands for
a variable and carries no specific meaning. Reasons for calling t a ‘trace’ will be
explained at the end of this section.

If P is a Fq-rational point of E, then ϕ(P ) = P . In such a case (I.2) states that
[P ]	[t]P⊕[q]P = [q−t+1]P is equal to O. This is true because P ∈ E(Fq) ≤ E(F̄q)
and |E(Fq)| = q − t+ 1.

I.1. Isogenies. To understand Schoof’s algorithm it is not completely necessary
to absorb the content of this subsection. Its purpose is to set the endomorphisms
occurring in (I.1) into a broader context. It explains the notion of morphism and
the notion of isogeny, and states some of the basic properties that morphisms and
isogenies fulfil. Morphisms and isogenies belong to central notions of elliptic curves
theory, and are used in quite a few algorithms.

How to transfer the notion of a rational map to projective curves, say C and D?
This question can be answered in several ways. Here we shall discuss, for the sake
of simplicity, only the situation when both C and D are smooth. In that case every
rational map from an affine part of C to an affine part of D may be extended to a
morphism C → D.

Suppose that C = VF and D = VG. A morphism ψ : C → D is represented by
A = (A1 : A2 : A3) if the polynomials A1, A2, A3 ∈ K[X1, X2, X3] are homogeneous
and of the same degree and, with only finitely many exceptions, for each α = (α1 :
α2 : α3) ∈ C at least one of A1(α), A2(α) and A3(α) is nonzero, and (A1(α) :
A2(α) : A3(α)) = ψ(α) ∈ D.

Triples (A1 : A2 : A3) and (B1 : B2 : B3) represent the same morphism if
AiBj − AjBi ∈ (F ) whenever 1 ≤ i < j ≤ 3. It can be proved that if α ∈ C, and
if ψ : C → D is a morphism, then there exists (A1 : A2 : A3) representing ψ such
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that at least one of Ai(α) is not zero. This means that a morphism ψ : C → D is
defined everywhere. This is the main theoretical advantage of morphisms when
compared to rational maps.

Any constant mapping C → D is a morphism. Because of that (and for other
reasons too) it is useful, while not necessary, to allow in the definition of morphism
that one or two of Ais are zero polynomials.

If C is an elliptic curve over K, then any K-rational point of C may be chosen
as the zero element O of the group C(K). In fact, C(K) is completely determined
by C and the choice of O. This is why some authors define an elliptic curve as a
pair (C,O). Here it is assumed that O is known from the context. By context we
understand, e.g., the convention that O =∞ for a Weierstraß curve, and O = (0, 1)
for a (twisted) Edwards curve. (Of course, choosing a different neutral element
induces different addition formulas.)

Let C and D be smooth elliptic curves over K, and let OC and OD be the neutral
elements. An isogeny C → D is any morphism C → D that sends OC upon OD. It
can be proved (and the proof is not completely easy) that each isogeny is also a
group homomorphism C(K)→ D(K). A related result states that if ψ1 and ψ2

are isogenies C → D, then ψ1 ⊕ψ2 is also an isogeny C → D. (The mapping
ψ1 ⊕ψ2 sends a point P ∈ C to ψ1(P )⊕ψ2(P ) ∈ D, the addition being performed
in D(K̄).) Note that if n > 0, then the mapping P 7→ [n]P can be expressed as
idC ⊕ · · · ⊕ idC , where idC occurs n times. To prove that P 7→ [n]P is an isogeny
thus does not require knowledge of formula (D.3).

An endomorphism of C is an isogeny C → C. This is seemingly inconsistent with
usual conventions since here an endomorphism of C is something different than a
morphism C → C. As an example of the latter take a point Q ∈ C. The translation
tQ : P 7→ P ⊕Q is a morphism C → C, but not an endomorphism (unless Q = O)
since it maps O upon Q.

Without going into details let us justify the convention that an endomorphism
of C has to be an isogeny by saying that endomorphisms of C are, in fact, assumed
to be endomorphisms of (C,O).

All endomorphisms of C form a ring. The ring is denoted by End(C). This ring
contains a subring that is isomorphic to Z and consists of all mappings [n] : P →
[n]P . If K = Fq, then End(C) also contains the Frobenius endomorphism ϕ.

As an example how to express a rational map (ρ1, ρ2) as a morphism represented
by (A1 : A2 : A3) let us consider the doubling upon a smooth Weierstraß curve C
given by y2 = x3 + ax + b. The strategy is always the same. Replace ri/si =
ri(x1, x2)/si(x1, x2) that represents ρi by Ri(X1, X2, X3)/Si(X1, X2, X3), where
deg(Ri) = deg(Si), gcd(Ri, Si) = 1 and Ri(X1, X2, 1)/Si(X1, X2, 1) = ri/si, and
then replace (R1/S1 : R2/S2 : 1) by (R1S/S1 : R2S/S2 : S) = (A1 : A2 : A3), where
S = lcm(S1, S2).

In our example we may proceed similarly as when expressing the doubling in
projective coordinates, as done at the end of Section A. We have

r1(x1, x2)

s1(x1, x2)
=

(3x21 + a)2 − 8x1x
2
2

4x22
,

r2(x1, x2)

s2(x1, x2)
=

(3x21 + a)(12x1x
2
2 − (3x21 + a)2)− 8x42
8x32

,

R1(X1, X2, X3) = (3X2
1 + aX2

3 )2 − 8X1X
2
2X3,

S1(X1, X2, X3) = 4X2
2X

2
3 ,

R2(X1, X2, X3) = (3X2
1 + aX2

3 )(12X1X
2
2X3 − (3X2

1 + aX2
3 )2)− 8X4

2X
2
3 , and

S2(X1, X2, X3) = 8X3
2X

3
3 = S(X1, X2, X3).
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This shows that the morphism P 7→ [2]P may be represented by (A1 : A2 : A3) =
(2X2X3R1(X1, X2, X3) : R2(X1, X2, X3) : 8X3

2X
3
3 ). Unlike the rational maps,

morphisms are defined everywhere. To illustrate this assume that P = (α, β) =
(α : β : 1) is an involution. This means that β = 0. In such a case (A1 : A2 : A3)
sends P upon (0 : −(3α2 + a)3 : 0) = (0 : 1 : 0) = ∞, as expected. (Recall that
3α2 + a 6= 0 since α is a simple root of x3 + ax+ b.)

I.2. The idea of Schoof’s algorithm. Schoof’s algorithm counts the number of
Fq-rational points upon an elliptic curve E. It will be assumed that E is given by
y2 = x3 + ax+ b and that q is divisible by neither 2 nor 3.

While we shall be concerned only with Weierstraß curves, the general framework
of Schoof’s algorithm is clearly applicable to other forms of elliptic curves. Nev-
ertheless, details of the algorithm are tightly bounded with the specific properties
of Weierstraß curves. The algorithm may be adapted to normal forms in charac-
teristics 2 and 3. However, the case of y2 = x3 + ax + b is technically the least
complicated.

Recall that the order of E(K) does not change under a birational equivalence.
Hence there is always a possibility of finding a Weierstraß curve that is birationally
equivalent to a given curve E.

The complexity of Schoof’s algorithm is O(log8 q) bit operations. This is an
upper estimate that has been confirmed by practical experience. Theoretical com-
plexity that uses different estimates for the complexity of multiplication is somewhat
lower.

More advanced counting algorithms by Elkies and Atkins develop Schoof’s ideas
further on. A complete understanding of the Schoof-Elkies-Atkins algorithm (the
SEA algorithm) requires knowledge of modular polynomials.

We shall now give an overall description of Schoof’s algorithm.
Denote by t the trace of the Frobenius endomorphism. By Hasse’s theorem,

|t| ≤ 2
√
q. If `1 < · · · < `r are primes such that

∏
`i > 4

√
q and t mod `i is

known for each i ∈ {1, . . . , r}, then the Chinese Remainder Theorem determines t
uniquely.

Primes `1, . . . , `r are taken to be the first r primes for which
∏
`i is big enough.

The main part of Schoof’s algorithm thus is to determine t` = t mod `, where ` is
a prime that is significantly smaller than q.

If ` = 2, then t` = 0 when E(K) contains an involution, and t` = 1 otherwise.
Thus t2 = 1 if and only if the polynomial x3 + ax + b is irreducible in K[x]. Note
that the latter happens if and only if x3 + ax+ b is coprime to xq − x.

For the rest we may thus assume that ` is an odd prime.
Let us denote by E[`]∗ the nonzero elements of E[`]. Hence each P ∈ E[`]∗ is of

order `. Each such P fulfils (I.2). Since [`]P = O, we have, in fact,

ϕ2(P )⊕ [q`]P = [t`]ϕ(P ), where q` = q mod `. (I.3)

This holds for every P ∈ E[`]∗. Hence if we find τ ∈ {0, 1, . . . , `− 1} such that for
some P ∈ E[`]∗

ϕ2(P )⊕ [q`]P = [τ ]ϕ(P ),

then there must be τ = t`. The algorithm proceeds by taking values of τ =
0, 1, . . . , (`−1)/2 one after another. For each such τ the algorithm tests the existence
of P ∈ E[`]∗ such that

ϕ2(P )⊕ [q`]P = [±τ ]ϕ(P ) (I.4)

until it succeeds.
Imagine for a while that all points P = (α, β) ∈ E fulfilling (I.4) were at our

disposal. In such a case the obvious step to do would be to test whether some of
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them belongs to E[`]. Of course, P ∈ E[`] if and only if ψ`(α, β) = 0, where ψ` is
the `th division polynomial.

However, the algorithm does not run by finding all points P that fulfil (I.4). That
would be difficult to achieve. What the algorithm does is to look for properties that
such a point P has to fulfil, and to refute the incorrect values of τ when such a
property is not fulfilled.

Suppose for a while that τ is fixed and that τ > 0. Let us compare symbolically
the first coordinate of ϕ2(P )⊕[q`]P (i.e., the x-coordinate) with the first coordinate
of [τ ]P . It turns out that there exists a polynomial hX = hX,τ ∈ Fq[x] such that a
point P = (α, β) ∈ E fulfils (I.4) if and only if hX(α) = 0. To be exact, the
“if and only if” relationship holds only for those P that do not belong to E[q`]

∗

or E[±τ ]∗. These exceptions cause no problem since the goal is to decide whether
such a P can be found in E[`]∗. This is true if and only if gcd(f̄`, hX) 6= 1.

Suppose thus that f̄` and hX have a common root, say α. This means that
t` ∈ {−τ, τ}, and that there exists β ∈ F̄q such that P = (α, β) belongs to E[`]∗

and the point ϕ2(P )⊕ [q`]P shares the first coordinate with [τ ](ϕ(P )). If these two
points share also the second coordinate, then they are equal. In such a case t` = τ .
If the points to not agree then t` = −τ . Hence the second coordinates either agree
for all P ∈ E[`]∗, or for none P ∈ E[`]∗.

It turns out that if the second coordinates are compared, then the value of β
may be cancelled out. Therefore there exists a polynomial hY such that hY (α) = 0
if and only if the second coordinates agree, for any P = (α, β) ∈ E[`]∗. If hY and
f̄` have a nontrivial common divisor, then t` = τ . Otherwise t` = −τ .

The construction of polynomials hX and hY can be regarded as the computa-
tional core of Schoof’s algorithm.

Because we are interested only in gcd(hX , f̄`), the polynomial hX may be actually
computed modulo f̄` all the time. This reduces the computational complexity. The
degree of f̄` is ≤ (`2 − 1)/2. The same reduction may be done for hY and other
polynomials.

Polynomials hX and hY are not computed when t` = 0, and also in some other
cases. What exactly are these exceptional cases and how they are handled is ex-
plained below.

While points P = (α, β) ∈ E[`] are considered throughout the description of the
algorithm, neither α nor β is ever explicitly computed. All needed tests are turned
into a polynomial form that involves α only, and we are asking if such a polynomial
has a root in E[`]∗. Since any P ∈ E \E[2] belongs to E[`] if and only if f̄`(α) = 0,
such a test may be performed by testing whether the polynomial and f̄` possess a
nontrivial common divisor.

I.3. When the first coordinates coincide. When starting to process an odd
prime `, the first step to be performed is to add ϕ2(P ) and [q`]P under the as-
sumption that P ∈ E[`]∗. But which formula to use? To decide that, the al-
gorithm finds out whether there exists P ∈ E[`]∗ such that ϕ2(P ) = [±q`]P . If
P = (α, β) ∈ E \ E[q`], then [q`](P ) can be expressed by means of (D.3). Since

ϕ2(P ) = (αq
2

, βq
2

) it is easy to see that the first coordinates of both ϕ2(P ) and
[q`](P ) depend only upon α. This yields a polynomial s̄` ∈ Fq[x] such that the
first coordinates agree if and only if s̄`(α) = 0. The existence of P ∈ E[`]∗ with
ϕ2(P ) = [±q`]P is thus equivalent to gcd(s̄`, f̄`) 6= 1. Let the latter be true.

Thus either ϕ2(P ) = [q`]P or ϕ2(P ) = [−q`]P . In the latter case t` = 0. To test
whether t` = 0 compare the second variables of ϕ2(P ) and [−q`]P . It turns out
that by using β2 = α3 + aα + b the value of β can be cancelled out from such an
equation, and we get a polynomial in x. Now, t` = 0 if and only if α is the root
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of this polynomial for each (α, β) ∈ E[`]∗, and that takes place if and only if this
polynomial is a multiple of f̄`.

If the polynomial is coprime to f̄`, then ϕ2(P ) = [q`]P for some (but necessarily
for all) P ∈ E[`]∗. This is a special case which differs from the cases considered
above. Historically it is important since this has been the departing point for Elkies
improvements.

The equality ϕ2(P ) = [q`]P does not yield immediately the value of t`. Replacing
ϕ2(P ) with [q`]P in (I.3) gives [2q`]P = [t`]ϕ(P ). Thus ϕ(P ) = [2q`/t`]P (the
fraction is evaluated modulo `) and

[q`]P = ϕ2(P ) = ϕ([2q`/t`]P ) = [(2q`/t`)
2]P.

Therefore [t2` ]P = [4q`]P and t2` ≡ 4q` mod `. This gives two possible values for
t`. Denote one of them by τ . We are asking whether [2q`]P = [τ ]ϕ(P ) for some
P ∈ E[`]∗. This can be written as ϕ(P ) = [γ]P , where γ = 2q`/τ . A test for that
can be devised similarly as the tests described earlier. If no such P exists, then
t` = −τ .

I.4. Comments on the SEA algorithm. In Schoof’s algorithm, when there is
computed the gcd of a polynomial and f̄`, the polynomial is in most cases either
coprime to f̄` or a multiple of f̄`. This is because the equation (I.3) either holds
for all P ∈ E[`]∗, or for none P ∈ E[`]∗. However the equation ϕ2(P ) = [q`]P
may hold only for some P ∈ E[`]∗, and not for all of them. What is behind this
phenomenon?

We have E[`] ∼= Z` × Z`. This means that (E[`],⊕) can be regarded as a vector
space of dimension 2 over Z`. The Frobenius endomorphism when restricted to
this vector space is a linear automorphism, i.e., a linear transformation with trivial
kernel. Denote this restriction by ψ. By Cayley-Hamilton Theorem, ψ2− tr(ψ)ψ+
det(ψ) = 0. It is now clear why t is called the trace of Frobenius endomorphism.

The polynomial T 2− t`T + q` may have a root in Z`. If it does have a root, then
` is called an Elkies prime. If the polynomial is irreducible over Z`, then ` is called
an Atkin prime.

Assume that ` is an Elkies prime. Then ψ possesses one or two eigenvalues. If λ
is such an eigenvalue, then there exists P ∈ E[`]∗ such that ϕ(P ) = [λ]P . We have
encountered such a situation above, with λ = 2q`/t`. That is a special case. In the
SEA algorithm an eigenvalue λ is determined for each Elkies prime `.

Since we do not know t` in advance we also do not know in advance whether ` is
an Elkies or Atkin prime. However, there exist methods using modular polynomials
that allow to establish this without actually computing t`. Furthermore there exist
methods involving modular polynomials and curves isogenous to E that allow,
for each Elkies prime, to perform the testing for λ more efficiently. Once λ is
known, we can use the existence of P ∈ E[`]∗ with ϕ(P ) = [λ]P to express (I.3)
as [λ2](P )⊕ [q`]P = [t`λ]P , which implies that t` = λ+ q`/λ (the fraction and the
addition is evaluated modulo `).

Another ingredient of the SEA algorithm is a method how to obtain, in case of
an Atkin prime, a relatively small set T` such that t` has to belong to T`.
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S. Schoof’s algorithm

Let it be assumed that q is a prime power not divisible by 2 and 3, and that
a, b ∈ Fq are such that y2 = x3 + ax+ b determines a smooth Weierstraß curve E.
Polynomials hX , hY and s̄` are assumed to have the same meaning as in Section I.
Here we shall explain how exactly they are computed.

Any polynomial in one variable that is computed in Schoof’s algorithm may be
immediately reduced modulo f̄`, where ` is the prime that is being processed. This
fact is not being reflected in the ensuing description of Schoof’s algorithm.

The description contains declarations of only those variables and procedures the
meaning of which is not clear from the context. It skips declarations of procedures
equalx, nonequalx, tyzero and eigen that are explained separately.

Procedure equalx is called when ϕ2(P ) and [q`]P agree in the first variable for
some P ∈ E[`]∗, while noequalx is used when E[`]∗ carries no such P .

Schoof’s algorithm:

INPUT: q, a and b that determine a Weierstraß curve E.
OUTPUT: The order of E(Fq).

VARIABLES: B is the product of primes.

M is the set of (`, t`).
r is the return value from nonequalx.

B = 2;
` = 2;
if (gcd(xq−x, x3+ax+b) = 1) then τ = 1 else τ = 0;
M = {(2, τ)};
while (B < 4

√
q) do:

` = nextprime(`);
B = B ∗ `;
if (gcd(s̄`, f̄`) 6= 1)

then τ = equalx(`)
else do:

τ = 0;
do:

τ = τ + 1;
r = nonequalx(`, τ);

until (r 6= 0);
if (r = −1) then τ = −τ ;

M = M ∪ {(`, τ)};
Recover t using the set M and the CRT.

Return q+1−t.

Suppose that m ≥ 2 and that P = (α, β) ∈ E. By (D.3) the first coordinate
of [m]P is equal to α − (ψm−1ψm+1ψ

−2
m )(α, β). Using the transformation of (D.5)

this yields α − f̄m−1(α)f̄m+1(α)/4β2f̄2m(α) if m is even, while for m odd we get
α− f̄m−1(α)f̄m+1(α)4β2/f̄2m(α). Therefore the first coordinate of [m]P , m ≥ 2, is
equal to

α− f̄m−1(α)f̄m+1(α)

4(α3 + aα+ b)f̄2m(α)
if m is even, and

α− 4(α3 + aα+ b)f̄m−1(α)f̄m+1(α)

f̄2m(α)
if m is odd.

(S.1)
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Thus s̄`(x) = xq
2 − x if q` = 1,

s̄`(x) = 4(xq
2

−x)(x3+ax+b)f̄2q`(x) + f̄q`−1(x)f̄q`+1(x) if q` is even, and

s̄`(x) = (xq
2

−x)f̄2q`(x) + 4(x3+ax+b)f̄q`−1(x)f̄q`+1(x) if q` > 1 is odd.

From (D.3) there also may be derived a formula for the second coordinate of [m]P ,
m ≥ 2:

β
f̄m+2(α)f̄2m−1(α)− f̄m−2(α)f̄2m+1(α)

16(α3+aα+b)2f3m(α)
if m is even, and

β
f̄m+2(α)f̄2m−1(α)− f̄m−2(α)f̄2m+1(α)

f̄3m(α)
if m is odd.

(S.2)

The procedure equalx calls as a subprocedure the procedure tyzero(`,m) with
parameter m equal to q`. This procedure returns TRUE if there exists P = (α, β) ∈
E[`]∗ such that ϕ2(P ) = [−m]P , under the assumption that there exists P ∈ E[`]∗

for which the first coordinates of ϕ2(P ) and [−m]P agree.
Let us now describe the content of tyzero. The procedure is concerned with

the equality −βq2 = βrm(α)/sm(α), where rm, sm ∈ Fq[x] correspond to (S.2).
Thus rm = f̄m+2f̄

2
m−1 − f̄m−2f̄2m+1 if m is even, etc. Since β2 = α3+aα+b and

β 6= 0, the equality takes the form (α3+aα+b)(q
2−1)/2 = −rm(α)/sm(α). If t` = 0,

then each α ∈ E[`]∗ fulfils this equality. That takes place if and only if f̄` divides

sm(x)(x3+ax+b)(q
2−1)/2 + rm(x).

The other procedure called by equalx is called eigen. The parameters are ` and
m. The procedure returns TRUE if there exists P ∈ E[`]∗ such that ϕ(P ) = [m]P .
The procedure has two parts, the first part tests the first coordinate and produces
a polynomial g` ∈ Fq[x] that can be regarded as an input for the second part which
tests the second coordinate. In Schoof’s algorithm the first part may be skipped
if gcd(s̄`, f̄`) is remembered, since at this point of the algorithm that polynomial
coincides with g` (the exact meaning of g` is described below).

The first part is similar to the derivation of s̄`. The only difference is that the

term xq
2 − x is replaced by xq − x. Indeed, we are asking whether there exists

(α, β) ∈ E[`]∗ such that αq = α− (ψm−1ψm+1ψ
−2
m )(α, β), and derive a polynomial

in variable x for which α has to be a root. To see if there exists a root of such
a polynomial that really belongs to E[`]∗ we compute the gcd of this polynomial
with f̄`, and denote the gcd by g`. If g` = 1, then the procedure returns FALSE.
Assume that g` is nontrivial. There are some special situations when g` = f̄`
(e.g. if λ is a double root of the characteristic polynomial induced by the Frobenius
endomorphism). In the other situations the polynomial g` is of degree (` − 1)/2.
The points (α, β) ∈ E[`]∗ that fulfil g`(α) = 0 form a subgroup of E[`]∗. For the
second part of the test only these points are to be considered because these are the
points from which the eigenspace, if it exists, is constructed.

We are thus asking whether βq is equal to βrm(α)/sm(α), where rm and sm are
derived from (S.2) as in the procedure tyzero, and where g`(α) = 0. This is true
if g`(x) divides (x3+ax+b)(q−1)/2sm(x) − rm(x) (alternatively: if the latter two
polynomials possess a nontrivial common divisor).

PROCEDURE equalx(`)
INPUT: Prime ` for which there exists P ∈ E[`]∗ such that there agree

x-coordinates of ϕ2(P ) and [q`]P.
OUTPUT: The value of t`.

if (tyzero(`, q`) = TRUE)
return 0;

τ = sqrt(4q`) mod `;
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γ = 2q`/τ mod `;
if (eigen(`, γ) = TRUE)

return τ
else return −τ;

The description of procedure nonequalx is short too. In this case the computa-
tional content is delegated to the description of polynomials hX and hY (and not
to subroutines).

PROCEDURE nonequalx(`, τ)
INPUT: Prime ` such that the x-coordinates of ϕ2(P ) and [q`]P differ

for every P ∈ E[`]∗.
Positive τ < `/2 that is a candidate for t`.

OUTPUT: 0 if t` 6= ±τ, 1 if t` = τ, −1 if t` = −τ.
if (gcd(hX , f̄`) = 1) return 0;

if (gcd(hY , f̄`) = 1) return −1;
return 1;

When nonequalx is invoked, then it is already known that the generic addition
formula holds for ϕ2(P ) ⊕ [q`]P whenever P ∈ E[`]∗. Put m = q` to spare some
indices.

Write (S.1) and (S.2) in a compact form

[m](α, β) =

(
α− cm(α)

dm(α)
, β

rm(α)

sm(α)

)
. (S.3)

Note that this can be used even for m = 1 if we set d1(x) = r1(x) = s1(x) = 1 and

c1(x) = 0. With this notation ϕ2(P )⊕ [m]P = (αq
2

, βq
2

)⊕ [m](α, β) is equal to(
λ2 − αq

2

− α+
cm(α)

dm(α)
, λ

(
2αq

2

− λ2 + α− cm(α)

dm(α)

)
− βq

2

)
, where

λ =
βq

2 − βrm(α)/sm(α)

αq2 − α+ cm(α)/dm(α)
= β

dm(α)

sm(α)

(α3+aα+b)(q
2−1)/2sm(α)− rm(α)

dm(α)(αq2 − α) + cm(α)
.

Since in the first coordinate λ occurs only as a square, the occurrence of β may be
completely eliminated from the expression of the first coordinate of ϕ2(P )⊕ [m]P .

We have

[τ ]ϕ(P ) = ϕ([τ ]P ) =

(
αq − cτ (αq)

dτ (αq)
, βq

rτ (αq)

sτ (αq)

)
.

Therefore comparing the first coordinate of ϕ2(P )⊕ [m]P with αq − cτ (αq)/dτ (αq)
results into a polynomial condition on α. This is how polynomial hX is derived.
The first coordinates thus agree if and only if hX(α) = 0, assuming dm(α) 6= 0,
sm(α) 6= 0 and dτ (α) 6= 0. The latter assumptions cause no difficulty since an
element of E[q`]

∗ or E[τ ]∗ is never an element of E[`]∗.

Since β may be eliminated from λ2 and since βq
2

= β(α3 + aα+ b)(q
2−1)/2 and

βq = β(α3 + aα + b)(q−1)/2 we see that when comparing the second coordinate
of [τ ]ϕ(P ) with the second coordinate of ϕ2(P ) ⊕ [m]P the value of β may be
cancelled out. Therefore the equality of the second coordinates may be expressed
via a polynomial in α too. This is the polynomial hY .


