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D. Division polynomials

Let us fix a field K of characteristic p 6= 2, 3, and let a, b ∈ K be such that
4a2 + 27b2 6= 0. Use E to denote the smooth Weierstraß curve given by y2 =
x3 + ax+ b. Recall that E[m] denotes the group of all P ∈ E such that [m]P =∞.
This group is a subgroup of E(K̄).

If p - m, then |E[m]| = m2, by Theorem G.1. There are thus m2−1 affine points
P = (α, β) for which [m]P =∞.

Note that (α, β) ∈ E[m] ⇔ (α,−β) ∈ E[m]. This is because (α,−β) = 	P .
Hence, if m is odd and p - m, then there are exactly (m2 − 1)/2 different values of
α that occur within the affine points (α, β) ∈ E that are of order that divides m.

If m is even, then we have to be a bit more cautious since in this case E[m]
contains involutions. There are three of them, and they are equal to (ζi, 0), where
x3 + ax+ b =

∏
(x− ζi), 1 ≤ i ≤ 3. Hence in this case, provided p - m, the number

of α is exactly ((m2 − 1)− 3)/2 + 3 = (m2 + 2)/2.

It is thus not surprising that there exist polynomials ψ̃m ∈ K[x] of respective

orders (m2 − 1)/2 and (m2 + 2)/2 such that (α, β) ∈ E[m]⇔ ψ̃m(α) = 0.

Of course, if m1 | m2, then E[m1] ≤ E[m2] and ψ̃m1
divides ψ̃m2

.

Therefore ψ̃2 divides ψ̃m if m is even. A point (α, β) ∈ E is an involution if and

only if α3 + aα+ b = 0. Hence ψ̃2 = x3 + ax+ b.
Another criterion for (α, β) being an involution is that β = 0. This criterion is

more easy to check. Because of that (and because of compatibility with the theory
of Weierstraß equations in characteristics 2 and 3) it is usual to use polynomials

ψm that are in defined in variables x and y, and not polynomials ψ̃m ∈ K[x] that
are defined only in x. The difference is small. In our case of y2 = x3 + ax + b,
char(K) 6= 2, 3, the polynomial ψ2 is defined as 2y. Furthermore, ψm = ψ̃m if m is

odd and ψm = 2yψ̃m/(x
3 + ax+ b) if m is even.

What is extremely important is the fact that the division polynomials ψm may
be defined recursively, e.g. in the following way:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,
ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1, where m ≥ 2, and

ψ2m = (ψm+2ψ
2
m−1 − ψm−2ψ2

m+1)ψm/2y, where m ≥ 3.

(D.1)

However, the definition of ψ2m+1 and ψ2m as given above is not correct without a
further adjustment. The formula upon the right always yields a polynomial in x
and y. In this polynomial there may be occurences of yi with i ≥ 2. If this happens
then yi is replaced by yi−2(x3 + ax + b) until the polynomial contains y in power
at most 1. The final polynomial is equal to some a(x) in the case of 2m + 1, and
to ya(x) in the case of 2m.

Every P = (α, β) ∈ E satisfies

[m]P =∞ ⇐⇒ ψm(α, β) = 0. (D.2)

This is true for all m ≥ 1, even for those with p | m. In addition to that the
division polynomials can be used to express [m]P for those P = (α, β) ∈ E that do
not belong to E[m]. If P /∈ E[m], m ≥ 2 and P /∈ E[2], then

[m]P =

(
α− ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ2

m+1

4βψ3
m

)
. (D.3)
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The above formula is written compactly, for the sake of clarity. For example the
numerator in the former fraction should be read as ψm−1(α, β)ψm+1(α, β).

None of (D.1) and (D.3) is easy to prove. Below we shall verify (D.1) for m ∈
{3, 4, 5}, and (D.3) for m = 2.

Instead of polynomials ψ̃m it is usual to work with polynomials f̄m ∈ K[x].
The meaning is nearly the same. The difference is that polynomials f̄m ignore the
involutions. They are defined so that if P = (α, β) ∈ E, then

P ∈ E[m] \ E[2] ⇐⇒ f̄m(α) = 0. (D.4)

The connection between f̄m and ψm is such that

f̄m =

{
ψm if m is odd, and

ψm/2y if m is even.
(D.5)

Thus f̄0 = 0, f̄1 = 1, f̄2 = 1, f̄3 = 3x4 + 6ax2 + 12bx− a2
and f̄4 = 2(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3).

For m ≥ 5 the polynomials f̄m may be defined recursively. While the formula
is straightforwardly derived from (D.1), it looks slightly more complicated. This is
because only the variable x is involved.

f̄2m+1 =

{
f̄m+2f̄

3
m − 16(x3 + ax+ b)2f̄m−1f̄

3
m+1 if m ≥ 3 is odd,

16(x3 + ax+ b)2f̄m+2f̄
3
m − f̄m−1f̄3m+1 if m ≥ 2 is even, and

f̄2m = f̄m(f̄m+2f̄
2
m−1 − f̄m−2f̄2m+1) for any m ≥ 3.

(D.6)

As may be guessed from the formulas above, division polynomials contain many
nonzero coefficients of large values. Hence for large q it is not possible to represent
them in computer memory if m is very big. Because of that the division polynomials
cannot be used, say, to directly verify the order of E(Fq). Nevertheless this order
can be determined by considering the behaviour of polynomials f̄m where m runs
through a set of not too large primes. This is how Schoof’s algorithm works.

Note that polynomials f̄m are not monic. In fact the leading coefficient of f̄m is
equal to m when m is odd, and to m/2 when m is even. This is important since
when m = p is the characteristic of the field, then deg(f̄m) < (m2 − 1)/2.

D.1. The division polynomial for order 3. Let P = (α, β) be a point upon
E, β 6= 0. The tangent of E at P can be expressed by the equation y = λx + µ
in which λ = (3α2 + a)/2β and µ = β − λα. The chord and tangent process, as
described in Section A, considers the intersections of the tangent and the curve E.

The first coordinate of such an intersection is a solution to the equation

(λx+ µ)2 = x3 + ax+ b. (D.7)

From the logic of the chord and tangent process it follows that α is always a double
root of the polynomial

x3 + ax+ b− (λx+ µ)2 = x3 − λ2x2 + (a− 2λµ)x+ b− µ2. (D.8)

This may also be seen immediately if we write (D.7) in the form

(λx+ µ− β)2 = x3 + ax+ b− 2β(λx+ µ) + β2

and observe that α is a root not only of the polynomials on both sides of this
equation, but also of their derivatives.

The point P is of order 3 if and only if the tangent intersects E in no other
point of E. This happens if and only if α is the triple root of the polynomial in
(D.8). We already know that the multiplicity of α is at least two. The multiplicity
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is hence equal to three if and only if λ2 = 3α. Substituting α3 + aα + b for β2 in
the denominator of λ2 turns the equation λ2 = 3α into

(3α2 + a)2 = 12α(α3 + aα+ b),

9α4 + 6aα2 + a2 = 12α4 + 12aα2 + 12bα and

3α4 + 6aα2 + 12bα− a2 = 0.

(D.9)

We have verified the formula for ψ3 = f̄3. A point (α, β) ∈ E is of order 3 if and
only if α is a root of 3x4 + 6ax2 + 12bx− a2.

Note that in this way we obtain all elements of E[3]. Only some of them are
K-rational. To get a K-rational point of E[3] the root α has to be from K and
α3 + aα+ b has to be a square in K.

D.2. The division polynomial for order 4. Suppose that P = (α, β) ∈ E is
not an involution. This means that β 6= 0. In such a case [4]P = ∞ if and only if
[2]P = (α′, β′) is an involution. This takes place if and only if β′ = 0.

By (A.6) and (A.7), β′ = λ(α − α′) − β, α′ = λ2 − 2α and λ = (3α2 + a)/2β.
This gives the following expression of β′ = λ(α− α′)− β:

λ(3α− λ2)− β = (2β)−3
(
(3α2 + a)(12αβ2 − (3α2 + a)2)− 8β4

)
. (D.10)

If β 6= 0, then β′ = 0 if and only if (2β)3β′ = 0. In order to express (2β)3β′ in
terms of α, observe that

12x(x3 + ax+ b)− (3x2 + a)2 = 3x4 + 6ax2 + 12bx− a2,
(3x2 + a)(3x4 + 6ax2 + 12bx− a2) = 9x6 + 21ax4 + 36bx3 + 3a2x2 + 12abx− a3,

and − 8(x3 + ax+ b)2 = −8x6 − 16ax4 − 16bx3 − 8a2x2 − 16abx− 8b2.

By summing up the latter two rows we obtain that

(3x2 + a)(12x(x3 + ax+ b)− (3x2 + a)2)− 8(x3 + ax+ b)2

= x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2 = f̄4(x)/2.

This verifies that

(3α2 + a)(12αβ2 − (3α2 + a)2)− 8β4 = f̄4(α)/2 for all (α, β) ∈ E. (D.11)

Hence if (α, β) ∈ E and β 6= 0, then (2β)3β′ = 0 if and only if f̄4(α) = 0.

D.3. Doubling. Assume m = 2 and suppose that P = (α, β) ∈ E is not an
involution. By (D.1), ψm−1(α, β) = 1, ψ2

m(α, β) = 4β2 and ψm+1(α, β) = 3α4 +
6α2 + 12bα− a2.

By (D.9) the latter is equal to 12αβ2 − (3α2 + a)2. Set λ = (3α2 + a)/2β. We
have

α−
(
ψ1ψ3

ψ2
2

)
(α, β) = α− 12α/4 + λ2 = λ2 − 2α.

This verifies that if m = 2, then the first coordinate of (D.3) corresponds to the
doubling formula (A.6) and (A.7).

By these formulas the second coordinate of [2]P is equal to λ(3α− λ2)− β, and
that can be expressed, by (D.10) and (D.11), as (2β)−3f̄4(α)/2. This agrees with
formula (D.3) since for m = 2 the second coordinate at the right hand side of (D.3)
is equal to

ψ4(α, β)/4βψ3
2(α, β) = 2βf̄4(α)/4β(2β)3 = f̄4(α)/16β3.
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D.4. Order and characteristic 5. As already mentioned, verifying formulas
(D.1) and (D.3) in their generality is technically demanding. Here it will not be
performed. However, we shall illustrate upon the case of m = 5 why ψm has much
smaller number of roots when char(K) divides m.

What we shall do first is to use (D.6) to get the general formula for f̄5, and then
we shall observe how dramatically f̄5 changes when it is considered in characteristic
5. By (D.6),

f̄5 = 16(x3 + ax+ b)2f̄4f̄
3
2 − f̄1f̄33 = 16(x3 + ax+ b)2f̄4 − f̄33 .

Since (x3 + ax+ b)2 = x6 + 2ax4 + 2bx3 + a2x2 + 2abx+ b2

and f̄4/2 = x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3

we may express (x3 + ax+ b)2f̄4/2 as

x12 +7ax10 +22bx9 +6a2x8 +48abx7 +(33b2−6a3)x6 +12a2bx5 +(21ab2−7a4)x4

+ (4b3 − 16a3b)x3 − (21b2a2 + a5)x2 − (20ab3 + 2a4b)x− 8b4 − a3b2,

while f̄33 = (3x4 + 6ax2 + 12bx− a2)3 is equal to

27x12 +162ax10 +324bx9 +297a2x8 +1296abx7 +(108a3 +1296b2)x6 +1080a2bx5

+ (2592ab2− 99a4)x4 + (1728b3− 432a3b)x3− (432a2b2− 18a5)x2 + 36a4bx− a6.

Therefore f̄5 = 16(x3 + ax+ b)2f̄4 − f̄33 is equal to

5x12 + 62ax10 + 380bx9 − 105a2x8 + 240abx7 − (240b2 + 300a3)x6

− 696a2bx5 − (1920ab2 + 125a4)x4 − (1600b3 + 80a3b)x3 − (240b2a2 + 50a5)x2

− (640ab3 + 100a4b)x− (256b4 + 32a3b2 − a6).

Modulo 5 this yields 2ax10 − a2bx5 − b4 − 2a3b2 + a6. Let r, s, t ∈ K̄ be such that
r5 = 2a, s5 = −a2b and t5 = −b4 − 2a3b2 + a6. If K is assumed, as usual, to be a
perfect field, then r, s, t ∈ K.

We see now that if char(K) = 5, then f̄5(x) = (rx2 + sx + t)5. This implies
|E[5]| = 5, provided a 6= 0. If a = 0, then E[5] is a trivial group.


