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Cauchy’s integral formula

Suppose a function f is analytic in z0, with series expansion f (z) =
∑∞

n=0 an(z − z0)n.
How to compute (or estimate) the coefficients an? One possibility is differentiation:

an =
f (n)(z0)

n!
,

where f (n) is the n-th derivative of f . But this is seldom useful in practice.

A more useful possibility is differentiation.

Convention: Any simple closed curve is oriented counterclockwise, unless specified
otherwise.

Theorem (Cauchy’s integral formula)

Let γ ⊆ C be a simple closed curve, and let z0 ∈ Int(γ). Let f be a function analytic
on a domain Ω with γ ∪ Int(γ) ⊆ Ω, and suppose f admits the expansion
f (z) =

∑∞
n=0 an(z − z0)n. Then, for every n ≥ 0 we have

an =
1
2πi

∫
γ

f (z)

(z − z0)n+1 .

Consequence: The value f (z0) (which is equal to a0) can be determined as
1

2πi

∫
γ

f (z)
z−z0

, and in particular, the value of f in z0 is uniquely determined by its values
on γ.
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Proof of Cauchy’s integral formula
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Consequence of CIF

Theorem (Easy part of Pringsheim’s theorem)

Suppose f is analytic in 0, with series exansion f (z) =
∑∞

n=0 anzn. Suppose that the
series has radius of convergence ρ ∈ (0,+∞). Then there is a point w ∈ C with
|w | = ρ such that f has no analytic continuation to a domain containing w .

Proof.

Let Ω = N<ρ(0). We know that f is analytic on Ω.

For contradiction, suppose for every w with |w | = ρ, f has an analytic continuation to
a neighborhood N<ε(w), for some ε = ε(w) > 0.

The set C = {w ∈ C; |w | = ρ} is compact. Hence it has a finite subset P s.t.⋃
w∈P N<ε(w) covers P.

Hence f has an analytic continuation to Ω+ := Ω ∪
⋃

w∈P N<ε(w).

The domain Ω+ contains a circle γ centered at the origin with radius R > ρ. Cauchy:

|an| =

∣∣∣∣ 1
2πi

∫
γ

f (z)

zn+1

∣∣∣∣ ≤ 1
2π
· len(γ) ·

maxz∈γ |f (z)|
Rn+1 =

maxz∈γ |f (z)|
Rn

.

Hence the exponential growth rate of (an) is at most 1
R
, and its radius of convergence

is at least R > ρ, a contradiction.
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Residue theorem

Recall: If a function f has a pole (of order d) in a point p, then on some N∗<ε(p), we
have

f (z) =
a−d

(z − p)d
+

a−d+1

(z − p)d−1 + · · ·+
a−1

z − p
+ a0 + a1(z − p) + a2(z − p)2 + · · ·

Definition

The coefficient a−1 in the above expansion is known as the residue of f in p, denoted
Resp(f ). If a function f is analytic in p, we put Resp(f ) = 0.

Theorem (Residue theorem (simplified))

Let γ be a closed simple curve, let f be a function meromorphic on a domain Ω
containing γ ∪ Int(γ). Suppose that no pole of f is on γ, and only finitely many poles
of f are in Int(γ). Let P be the set of poles of f in Int(γ). Then∫

γ
f = 2πi

∑
p∈P

Resp(f ).

Note: Cauchy’s formula is a special case of the Residue theorem, since
Resz0

(
f (z)

(z−z0)n+1

)
= an.
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Proof of the Residue theorem
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Bits of theory

Here are some facts about complex analysis, which are good to know, but not strictly
necessary for this course.

Definition: A function f is holomorphic on a domain Ω if it has a derivative in
every point of Ω.

Fact: For a function f and a domain Ω, f is holomorphic on Ω iff f is analytic
on Ω. (But beware: a function f can have a derivative in a point z0 without
being analytic in z0.)

Definition: A domain Ω ⊆ C is said to be simply connected if every closed curve
in Ω is homotopic in Ω to a point.

Recall: For a function f analytic on a simply connected domain Ω and any closed
curve γ ⊆ Ω, we have

∫
γ f = 0.

Fact (“Morera’s theorem”): Suppose that f is a continuous (not necessarily
analytic) function on a (not necessarily simply connected) domain Ω such that for
every closed curve γ ⊆ Ω we have

∫
γ f = 0. Then f has a primitive function F on

Ω, and in particular f and F are analytic on Ω.
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Ordered set partitions re-revisited

Let sn be the number of ordered set partitions of [n]. Here is what we already know:∑∞
n=0 sn

zn

n!
= 1

2−exp(z)
for |z| < ln 2. Hence the exponential growth rate of sn/n!

is 1
ln 2 .

The function f (z) = 1
2−exp(z)

is meromorphic on C with the set of poles
P = {pk ; k ∈ Z}, where pk = ln 2 + i2kπ.

In a neighborhood of a pole pk , f (z) admits the expansion of the form

f (z) =
−1

2(z − pk )
+ a0 + a1(z − pk ) + · · ·

For any K > 0, taking the set PK = {p ∈ P; |p| ≤ K}, the function

f (z)−
∑

p∈PK

−
1

2(z − p)

is analytic on N<K+ε(0), and hence

sn

n!
=
∑

p∈PK

1
2pn+1 + O(

1
Kn

) as n→∞.

Wanted: sn
n!

=
∑

p∈P
1

2pn+1 for fixed n, with explicit bounds on the speed of
convergence, so that we can calculate pn exactly.



Ordered set partitions re-revisited

Let sn be the number of ordered set partitions of [n]. Here is what we already know:∑∞
n=0 sn

zn

n!
= 1

2−exp(z)
for |z| < ln 2. Hence the exponential growth rate of sn/n!

is 1
ln 2 .

The function f (z) = 1
2−exp(z)

is meromorphic on C with the set of poles
P = {pk ; k ∈ Z}, where pk = ln 2 + i2kπ.

In a neighborhood of a pole pk , f (z) admits the expansion of the form

f (z) =
−1

2(z − pk )
+ a0 + a1(z − pk ) + · · ·

For any K > 0, taking the set PK = {p ∈ P; |p| ≤ K}, the function

f (z)−
∑

p∈PK

−
1

2(z − p)

is analytic on N<K+ε(0), and hence

sn

n!
=
∑

p∈PK

1
2pn+1 + O(

1
Kn

) as n→∞.

Wanted: sn
n!

=
∑

p∈P
1

2pn+1 for fixed n, with explicit bounds on the speed of
convergence, so that we can calculate pn exactly.

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand



Ordered set partitions re-revisited

Let sn be the number of ordered set partitions of [n]. Here is what we already know:∑∞
n=0 sn

zn

n!
= 1

2−exp(z)
for |z| < ln 2. Hence the exponential growth rate of sn/n!

is 1
ln 2 .

The function f (z) = 1
2−exp(z)

is meromorphic on C with the set of poles
P = {pk ; k ∈ Z}, where pk = ln 2 + i2kπ.

In a neighborhood of a pole pk , f (z) admits the expansion of the form

f (z) =
−1

2(z − pk )
+ a0 + a1(z − pk ) + · · ·

For any K > 0, taking the set PK = {p ∈ P; |p| ≤ K}, the function

f (z)−
∑

p∈PK

−
1

2(z − p)

is analytic on N<K+ε(0), and hence

sn

n!
=
∑

p∈PK

1
2pn+1 + O(

1
Kn

) as n→∞.

Wanted: sn
n!

=
∑

p∈P
1

2pn+1 for fixed n, with explicit bounds on the speed of
convergence, so that we can calculate pn exactly.

Guest
FreeHand



Ordered set partitions re-revisited

Let sn be the number of ordered set partitions of [n]. Here is what we already know:∑∞
n=0 sn

zn

n!
= 1

2−exp(z)
for |z| < ln 2. Hence the exponential growth rate of sn/n!

is 1
ln 2 .

The function f (z) = 1
2−exp(z)

is meromorphic on C with the set of poles
P = {pk ; k ∈ Z}, where pk = ln 2 + i2kπ.

In a neighborhood of a pole pk , f (z) admits the expansion of the form

f (z) =
−1

2(z − pk )
+ a0 + a1(z − pk ) + · · ·

For any K > 0, taking the set PK = {p ∈ P; |p| ≤ K}, the function

f (z)−
∑

p∈PK

−
1

2(z − p)

is analytic on N<K+ε(0), and hence

sn

n!
=
∑

p∈PK

1
2pn+1 + O(

1
Kn

) as n→∞.

Wanted: sn
n!

=
∑

p∈P
1

2pn+1 for fixed n, with explicit bounds on the speed of
convergence, so that we can calculate pn exactly.

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand



Ordered set partitions re-revisited

Let sn be the number of ordered set partitions of [n]. Here is what we already know:∑∞
n=0 sn

zn

n!
= 1

2−exp(z)
for |z| < ln 2. Hence the exponential growth rate of sn/n!

is 1
ln 2 .

The function f (z) = 1
2−exp(z)

is meromorphic on C with the set of poles
P = {pk ; k ∈ Z}, where pk = ln 2 + i2kπ.

In a neighborhood of a pole pk , f (z) admits the expansion of the form

f (z) =
−1

2(z − pk )
+ a0 + a1(z − pk ) + · · ·

For any K > 0, taking the set PK = {p ∈ P; |p| ≤ K}, the function

f (z)−
∑

p∈PK

−
1

2(z − p)

is analytic on N<K+ε(0), and hence

sn

n!
=
∑

p∈PK

1
2pn+1 + O(

1
Kn

) as n→∞.

Wanted: sn
n!

=
∑

p∈P
1

2pn+1 for fixed n, with explicit bounds on the speed of
convergence, so that we can calculate pn exactly.

Guest
FreeHand

Guest
FreeHand



Ordered set partitions via residues

Wanted (recall): sn
n!

=
∑

p∈P
1

2pn+1 for fixed n, with explicit bounds on the speed of
convergence, so that we can calculate pn exactly.

With f (z) = 1
2−exp(z)

and P as before, let γ be a simple closed curve with 0 ∈ Int(γ)

and with P ∩ γ = ∅. Fix n ∈ N0.

Residue theorem gives

∫
γ

f (z)

zn+1 = 2πi
∑

p∈(P∩Int(γ))∪{0}
Resp

(
f (z)

zn+1

)

= 2πi

 sn

n!
+

∑
p∈P∩Int(γ)

−
1

2pn+1


= 2πi

 sn

n!
−

∑
p∈P∩Int(γ)

1
2pn+1

 .

Goal: Show (for a suitably chosen γ) that
∫
γ

f (z)
zn+1 is small.

For K ∈ N, take γK to be the square whose vertices are ±(2K + 1)π ± i(2K + 1)π

Note: Int(γK ) ∩ P = {pj ; j = −K ,−K + 1, . . . ,K − 1,K}.
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Ordered set partitions – endgame

Recall: We know that

sn

n!
−

K∑
j=−K

1
2pn+1

j

=
1
2πi

∫
γK

f (z)

zn+1 .

We may check that for any K and any z ∈ γK , |f (z)| ≤ 1 and |z| ≥ (2K + 1)π.
Concluding: ∣∣∣∣∣∣ snn!

−
K∑

j=−K

1
2pn+1

j

∣∣∣∣∣∣ =
1
2π

∣∣∣∣∣
∫
γK

f (z)

zn+1

∣∣∣∣∣
≤

1
2π
· len(γK ) ·

1
((2K + 1)π)n+1

≤
1

(2πK)n
,

which tends to 0 as K →∞, and for K = n is much smaller than 1
n!
. Hence:

sn = n!
∞∑

j=−∞

1
2pn+1

j

, and

sn is the nearest integer to

n!
n∑

j=−n

1
2pn+1

j

.
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