3. Consider independent random variables $U_{1}$ a $U_{2}$ with uniform distribution on the interval $[0, a], a>0$, and the point process $\Phi$ in $\mathbb{R}^{2}$ defined as

$$
\Phi=\sum_{m, n \in \mathbb{Z}} \delta_{\left(U_{1}+m a, U_{2}+n a\right)}
$$

Determine the Palm distribution and the reduced second-order moment measure of the process. Express its contact distribution function and the nearest-neighbour distribution function.

Palm distribution $P_{x}$ : degenerate... $\Phi=\varphi_{1}^{x}=\sum S\left(x_{1}+m\right.$.

$$
P_{x}!\quad \Phi=e^{x}=\sum_{(m, m) \in \mathbb{Z}^{2},\{(0,0)\}} \delta\left(x_{1}+m a, x_{2}+m a\right)=e_{1}^{x}-\delta_{\left(x_{1}, x_{2}\right)}^{1} m_{1, n}
$$

Reduced Iud order moment measure:

$$
\lambda \beta(B)=\mathbb{E}!\Phi(B), \quad B \in \mathbb{B}\left(\mathbb{R}^{2}\right)
$$

$\hat{C}_{\text {stationary Point Processes (Demark 37) }}$ (B)

$$
\begin{gathered}
=\varphi_{2}^{0}(B)=\sum_{(m, m) \in \mathbb{R}^{2}-\{(0,0)\}} \mathbb{1}((m a, m a) \in B) \\
\lambda=\frac{1}{a^{2}} \text {...from earlier exercise } \rightarrow \partial(B)=a^{2} \cdot \sum_{(m, m) \in \mathbb{Z}} \ldots
\end{gathered}
$$

Nearest neighbour distance distribution function:

$$
\begin{gathered}
r>0 G(r)=P_{0}:(\{\nabla \in W: p(b(r, r))>0\}) \\
G(r)=\mathbb{1}(\omega \leq r) \\
F(r)=P(\Phi(b(r, r))>0)
\end{gathered}
$$

