
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 16, 226-274 (1978)

The Analysis of Double Hashing

LEO J. GUIBAS

Xerox Palo Alto Research Center, Palo Alto, California 94304

AND

ENDRE SZEMEREDI

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Received October 1, 1976; revised November 11, 1977

In this paper we analyze the performance of double hashing, a well-known hashing
algorithm in which we probe the hash table along arithmetic progressions where the
initial element and the increment of the progression are chosen randomly and inde-
pendently depending only on the key K of the search. We prove that double hashing is
asymptotically equivalent to uniform probing for load factors 01 not exceeding a certain
constant 0~~ = 0.31... . Uniform hashing refers to a technique which exhibits no clustering
and is known to be optimal in a certain sense. Our proof method has a different flavor
from those previously used in algorithmic analysis. We begin by showing that the tail of
the hypergeometric distribution a fixed percentage away from the mean is exponentially
small. We use this result to prove that random subsets of the finite ring of integers modulo
m of cardinality (em have always nearly the expected number of arithmetic progressions of
length k, except with exponentially small probability. We then use this theorem to start
up a process (called the extension process) of looking at snapshorts of the table as it fills up
with double hashing. Between steps of the extension process we can show that the effect of
clustering is negligible, and that we therefore never depart too far from the truly random
situation.

1. INTRODUCTION

In this section we introduce the basic notions of hashing and of algorithmic analysis.
We deiine terminology and notation to be used throughout this paper. Finally we present
a summary of the results to be proved.

1.1. Hashing Algorithm

Hashing algorithms are a certain type of search procedure. We assume that we are
given a set of records, where each record R is uniquely identified by its key K. Besides K
the record R contains some unspecified useful information in the field INFO, as depicted

in Fig. 1.1.1.

226
0022-0000/78/0162-0226$02.00/0
Copyright 0 1978 by Academic Press, Inc.
AU rights of reproduction in any form reserved.

DOUBLE HASHING 227

We wish to organize our records in such a way that (1) we can quickly find the record
having a given key K (if such a record exists), and (2) we can easily add additional records
to our collection. Since all retrieval and update requests are specified exclusively in terms
of the key of a record, we will ignore the INFO field in most of the discussion that follows.
A straightforward way to implement this organization is to maintain our records in a
table. A table entry is either empty, or it contains one of our records, in which case it is
fun. We can look for a record with a given key by exhaustively examining all entries of
the table. Similarly, a new record can be inserted into the table by searching for an empty
position. It is clear that, unless we are careful, the searches in question can become quite
protected for a large collection of records.

the hash table
""

0 ',, full:,)), ',,
1, k

KEY

INFO

A RECORD

the probe path

FIG. 1.1.1. The hash function h as a mapping.

The idea of hashing is that of using a transformation h on the key K which gives us a
“good guess” as to where in the table the record containing our key K is located. Suppose
our table has m entries or positions, numbered 0, l,..., m - 1. Then h maps the universe
of keys, which we assume very large, into the set (0, I,..., m - l}. We call h a hash
function, and depict it as a mapping, as in Fig. 1 .I. 1.

If h(K) = s, then we will say that key K hcrshes to position s. Naturally, several keys may
hash to the same position. Thus if we are trying to insert a new key K into the table, it
may happen that entry h(K) of the table is already occupied by another key. In that event
we need a mechanism for probing the rest of the table until an empty entry is found. We
will speak of a probe that encounters a full entry as a collision, and we will call our mecha-
nism a collision resolution strategy. (It may, of course, happen that we are trying to insert
a new key into an already full table, in which case we have an overjow.) Upon a retrieval
request for the same key, we follow the same probe path until the record containing the
key is found.

228 GUIBAS AND SZEMEFZEDI

We will assume that our collision resolution strategy is such that every table position is
examined exactly once before we return to the original location. The particular probe path
we follow during a search may depend on the key K and the state of the table at that
moment, as the examples of the next section will make clear. We will also assume that
our hash function selects each of the table entries with equal probability. It is intuitively
clear that we want our function h to “randomly scatter” the keys over the entire table as
much as possible. We will elaborate on these probabilistic concepts in Section 1.3. For
the moment the point we wish to make is that, once the “uniformity” of h has been
assumed, the collision resolution strategy alone fully determines the behavior of the
algorithm. Thus every hashing algorithm we consider naturally breaks up into two parts:
(1) the construction of the hash function h mapping the universe of possible keys into
the set (0, I,..., m - l} so that each set member is chosen with approximately equal
probability, and (2) the formulation of an efficient collision resolution strategy. Since in
this paper we are only concerned with the analysis of the performance of hashing algo-
rithms, we will completely ignore the problem of constructing good hash functions.
Similarly, if we use any additional randomizing transformations (hash functions) in the
collision resolution strategy, we will only need to know the probability distribution of
the values of such transformations. We will not concern ourselves with how such mappings
can be explicitly constructed, given a specific universe of keys.

1.2. Open Address Hash Techniques

A hashing algorithm is an open addressing method if the probe path we follow for a given
key K depends only on this key. Thus each key determines a permutation of (0, 1,. . . , m - 1 }
which indicates the sequence in which the table positions are to be examined. Let n
denote the number of records currently in the table. Perhaps the two best known open
addressing hash algorithms are linear probiq and double hashiv. We use the descriptions
of these algorithms given in [l I].

ALGORITHM L (Linear probing). This algorithm searches an m-node table, looking
for a given key K. If K is not in the table and the table is not full, K is inserted.

The nodes of the table are denoted by TABLE[i], for 0 < i < m, and they are of two
distinguishable types, empty and occupied. An occupied node contains a key, called
KEY[i], and possibly other fields. An auxiliary variable n is used to keep track of how
many nodes are occupied; this variable is considered to be part of the table, and it is
increased by 1 whenever a new key is inserted.

This algorithm makes use of a hash function h(K), and it uses a linear probing sequence
to address the table.

Ll [Hash]. Set i +- h(K). (Now 0 < i < m.)

L2 [Compare]. If KEY[i] = K, the algorithm terminates successfully. Otherwise
if TABLE[i] is empty, go to L4.

L3 [Advance to next]. Set i +- i - 1; if now i < 0, set i + i + m. Go back to
step L2.

DOUBLE HASHING 229

L4 [insert]. (Th e search was unsuccessful.) If n = m - 1, the algorithm
terminates with overflow. (This algorithm considers the table to be full
when 12 = m - 1, not when n = m.) Otherwise set n t n + 1, mark
TABLE[i] occupied, and setKEY[i] t K. 1

ALGORITHM D (Open addressing with double hashing). This algorithm is almost
identical to Algorithm L, but it probes the table in a slightly different fashion by making
use of two hash functions h,(K) and h,(H). A s usual h(K) produces a value between 0
and m - 1, inclusive; but h,(K) must produce a value between 1 and m - 1 that is
relatively prime to m. (For example, if m is prime, h,(K) can be any value between 1 and
m -- 1 inclusive; or if m = 2p, h,(K) can be any odd value between 1 and 2P - 1.) The
probe sequences in this case are arithmetic progressions.

Dl [First hash]. Set i +- h,(K).

D2 [First probe]. If TABLE[i] is empty, go to D6. Otherwise if KEY[i] = K,
the algorithm terminates successfully.

D3 [Second hash]. Set c +- h,(K).

D4 [Advance to next]. Set i + i - c; if now i < 0, set i +- i + m.

D5 [Compare]. If TABLE[i] is empty, go to D6. Otherwise if KEY[i] = K, the
algorithm terminates successfully. Otherwise go back to D4.

D6 [Insert]. If n = m - 1, the algorithm terminates with overflow. Otherwise
set 1z +- n + 1, mark TABLE[i] occupied, and set KEY[i] + K. 1

We note that the main difference between these two algorithms is that in double hashing
the decrement distance c can itself depend on the key K. As we will see later, this addi-
tional degree of freedom can have profound effects on the performance.

1.3. Algorithmic Analysis

We are concerned with analysing the performance of double hashing. A discussion of
how the analysis of specific algorithms relates to computational complexity is given in
[12]. We first have to define the cost measure by which we will evaluate the performance.
The two usual cost measures are the space and time consumed by the algorithm. In order
to make our time costs implementation independent we will use the number of probes
made during a lookup as our basic cost function. This accounts, however, for only part
of where the running time of a hashing algorithm is spent. The computation of the hash
function(s) is another significant component. In comparing algorithms we cannot always
factor this component out, as double hashing, for example, uses two hash function
computations per search, vs only one for linear probing. Having made this caveat we
now strictly confine our attention to the number of probes made.

With any hash function it can happen that all the keys we insert will select the same
probe sequence. In this unfortunate situation all the algorithms of the previous section
reduce to a linear search of the table. Thus the worst case of hashing methods is not very
interesting. We will be concerned with performance on the average. Before we can make

230 GUIBAS AND SZEMEREDI

precise the notion of the average number of probes, we need to specify the probability
distribution of the inputs to our algorithms. We assume that every one of the hash
functions we use will select each of its allowed values with equal probability, independently
of all the others. Thus for Algorithm L we will assume that h(K) = s (0 < s < m - 1)
with probability I/m. For double hashing we will take m to be prime and then assume
that (h,(K), h,(K)) = (i, j) with probability l/m(m - I), for all (;,j) with 0 < i < m - 1,
1 <j<m--l,i#j.

We now specify what we mean by the number of probes a bit more carefully. Consider
the insertion of a new record. We will include in our count the very last probe in which an
empty position was discovered. The other probes correspond to comparisons between
keys. To avoid monotony of language we will use the terms probe and comparison
interchangeably, even though this is misleading when it comes to the last probe. We
clearly need to distinguish a successful from an unsuccessful search. We will measure
the performance of a hashing algorithm by the following two quantities:

DEFINITION 1.3.1. Given any hashing algorithm we define C,’ to be the average
number of probes made into the table when the (n + 1) record is inserted (unsuccessful
search). We include in this count the very last probe that discovered the empty position
in an open addressing technique. We assume all hash functions involved to choose each
of their allowed values independently with equal probability.

Similarly, C, will denote the average number of comparisons (or probes) made in a
successful search using the algorithm, when the table contains n records. For C, we
assume that we are equally likely to look up any record present in the table.

In an open addressing technique it is clear that the number of comparisons required
to look up a specific record is the same as the number of probes made when that record
was inserted. This observation implies that

n-1
C, = (l/n) 1 Ci’*

i=O

Thus in open addressing C,, is just an average C,‘. For this reason C,’ will be the principal
quantity we investigate for such algorithms.

The quantities C, , C,’ naturally also depend on m, the table size. We will find that a
convenient way to express the answers we seek is in terms of the load (or occupancy)
factor 01 of the table, where a: = n/m. In several cases we will be unable to obtain C,, , C,’
as closedform expressions of n, m. But in these cases we will still be able to obtain formulas
for C,’ and C, as functions of 01 (and possibly m) that are asymptotically valid. That is,
as the table size m gets large, if the load factor o1,O < 01 < 1, stays fixed, these functions
of 01 will differ from the true values by errors of the order of 0(I/m), and which therefore
rapidly decrease as m increases. In terms of the load factor we may write C, , C,’ rather
than C, , C,‘. In this “continuous” approximation the above relation between successful
and unsuccessful searches for open addressing becomes

C, = (l/a) ia C,’ du.

DOUBLE HASHING 231

We will have occasion to appreciate the power of this notation throughout this
paper.

1.4. ClusteGzg

Since we are interested in the performance of hashing algorithms, we might ask the
following question: what is the probability that two keys will follow exactly the same
probe path ? We can expect that the higher this probability, the more will different keys
interfere with each other, and therefore the worse the performance of our algorithm
will be. This interference phenomenon we will generally refer to as dusteGg. For
example, in linear probing the probability that two keys will follow the same probe path
is identical to the probability that they will hash to the same location, which is l/m.
In double hashing this probabity is easily seen to be l/m(m - 1). Thus we expect double
hashing to have smaller C,’ (and C,) than linear probing, as is indeed borne out by the
analyses.

Another way to appreciate the effect of clustering is by observing that (loosely speaking)
configurations of occupied positions that have a relatively high C,’ grow with a higher
probability than configurations with a low C,‘. For example, in linear probing a long block
of contiguous occupied positions gives us a large contribution to the total C,‘. During
the next insertion the probability that such a block will grow by one is proportional to the
length of the block. Thus long blocks grow into even longer ones with higher probability
than short ones. This “pile-up” effect accounts for the rapid increase in C,’ for linear
probing as OL --+ 1. Similarly, in double hashing the configurations that contribute greatly
to the mean C,’ are those that contain a large number of arithmetic progressions among
the occupied positions. In general the probability that a given empty position will be
filled during the current insertion is proportional to the number of arithmetic progressions
coming from the occupied positions to that empty position. Here we have made the
convention that we have m - 1 arithmetic progressions of length 0, so as to properly
account for the probability of hitting our position on the first probe. Thus in double
hashing, sets of occupied entries with an excessive number of arithmetic progressions
will tend to grow into sets with even more progressions.

The connection between clustering and C,’ leads us to introduce a new family of
classes of hashing techniques, those that exhibit secondary, tertiary, and in general
K-ary clustering [ll]. A hashing technique is said to exhibit secondary clustering, if the
search into the table begins with one random probe, and then follows a fixed permutation
which depends only on the location of this first probe. A hashing technique is said to
exhibit tertiary clustering if it begins with two independently random probes into the
table, and then probes the remaining table positions in a fixed permutation that can
depend only on the locations of those first two probes. And in general a &u-y clustering
technique begins the search in the table with K independent random probes and then
continues along a permutation that depends on the locations of these first k probes only.
(It is unfortunate that our terminology is somewhat inconsistent: secondary clustering is
I-ary clustering, tertiary is 2-ary; we have maintained the terms secondary and tertiary
for historical reasons.) Thus linear probing exhibits secondary clustering, whereas
double hashing exhibits tertiary clustering. More formally, we can think of a secondary

232 GUIBAS AND SZEMERFDI

clustering technique as being specified by an m x (m - 1) matrix, where we think of the
rows of the matrix as indexed by (0, l,..., (m - l)}, and the row corresponding to i is a
permutation of (0, l,..., (m - 1)) - {i} which specifies the order in which the remaining
table positions are to be probed. Thus for linear probing we have the matrix depicted.
by Fig. 1.4.1.

m-l

FIG. 1.4.1. The matrix for linear probing.

Similarly, a tertiary clustering technique is defined by an (m(m - 1)) x (m - 2)
matrix, where we think of the rows as indexed by (i, j), 0 < i # j < m - 1 and row
(i, j) specifies in which order to probe the remaining m - 2 table positions when we make
our first probe at i and our second probe at j. Thus the matrix corresponding to double
hashing (assuming that m is prime) is as shown in Fig. 1.4.2, where the rows specify the
arithmetic progressions to be followed in the search.

::::1m ’ f f
(m-l,m-2) m-3 m-4 0 I

m(m-1)

-

m-2

FIG. 1.4.2. The matrix for double hashing.

It is convenient to introduce at this point an open addressing technique that exhibits
“no clustering,” namely, unijiim hushing (or probing). Uniform hashing has the property
that after n keys have been inserted, all C(m, n) possible subsets of occupied positions are
equally likely. To achieve this we first prove the table at h(K), then at h,(K) where
hd9 f WO then at h(K) f h,(K), WQ and so on. Here each hi is assumed to
select each of its allowed values with equal probability, independently of all the others.
This method is certainly of no practical interest, since we have to compute arbitrarily
many independent hash functions. On the other hand it is of theoretical importance,
since Ullman has proved that no other open addressing technique can have a smaller
C,’ for all n [14]. Thus the performance of uniform hashing can be used as a benchmark
against which to measure the success of other open addressing techniques.

The notion of clustering can also help us understand why we wish to make our hash
function h uniform, i.e., to make it equally likely to hash to any table entry. Suppose we
are dealing with a technique with secondary clustering and let pi denote the probability

DOUBLE HASHING 233

of hashing to entry i, 0 < i < m - 1. Then the probability that two keys will follow the
same probe path is

m-1

2 pi2

which, since&Gi<m pi = 1, is clearly minimized by setting*, = p, = ... = pm-i = I/m.

1.5. Background and Summary of the Results

The traditional tools of algorithmic analysis are the tools of classical combinatorial
enumeration: special numbers (i.e., binomial coefficients, Fibonacci numbers, etc.),
recurrence relations, and generating functions. Using these tools a large number of
hashing algorithms have been analyzed in the past, and the results are summarized in [I 11.

Uniform hashing was one of the earliest algorithms analyzed. Its performance is given by

or, in asymptotic terms,

C,’ = 1 + n/(m - 71 + l),

C,’ = l/(1 - a) + 0(1/m).

The considerably more difficult analysis of linear probing was first carried out correctly by
Knuth, who showed that

C,’ = (1 + l/(1 - +)/2 + 0(1/m).

Thus for load factors near 1 linear probing is quadratically worse than uniform probing,
In [6] we discuss hashing techniques that exhibit K-ary clustering. Among other

results we show that on the whole (i.e., averaged over all techniques) k-ary clustering
techniques for K > 1 are quite good. We prove that if the permutations described in the
definition of k-ary clustering for K > 1 are randomly chosen, then C,’ is asymptotically
l/(1 - or), the same as for uniform probing, which exhibits no clustering. We also
analyze “random” secondary clustering (K = l), in which case we find that C,’ is asymp-
totically l/(1 - a) - 01 - log(l - a). Thus secondary clustering techniques on the
average are worse than tertiary (since (Y + log(1 - a) < 0), although better than linear
probing.

In this paper we exclusively concern ourselves with the analysis of double hashing.
It has long been known from simulations that double hashing behaves essentially identically
with uniform probing:

Cm’ - l/(1 - @.)

with agreement to 1 or 2 tenths of a percent even for m - 1000 (see [l, 21).
In the following two sections we prove that for 0 < 01 < 0~~ , where 01~ is an absolute

constant, (Ye N 0.319, this is indeed the case: C,’ for double hashing is l/(1 - a) + o(l).
This proof of this result uses techniques that have a different flavor from those previously
employed in algorithmic analysis. We cannot appeal to recurrence relations of generating

571/16/2-8

234 GUIBAS AND SZEMEREDI

functions. Instead we use a probabilistic argument to prove that the configurations of arm
occupied positions that double hashing gives rise to have almost always nearly the expected
number of arithmetic progressions, and thus nearly the expected C,‘. In the proof we will
assume that m is prime, although it will be clear (as also pointed out below) that this is
not essential.

This equivalence is somewhat surprising, since we would expect double hashing to do
substantially worse than uniform hashing. The reason for this is that all probes in the case
of uniform hashing are independent, while this is not so for double hashing. In other words,
double hashing exhibits clustering; the probability that two keys will follow the same path
is 0(I/m”) not “zero” (0(1/m!)) as f or uniform hashing. The bad configurations for double
hashing are sets of occupied positions containing an excessive number of arithmetic
progressions. Such sets will tend to grow into sets with even more arithmetic progres-
sions, as a bit of thought will show. So it is by no means true that all sets of n occupied
entries are equally likely under double hashing. The sets with an abnormally high number
of arithmetic progressions are those that will make C,’ large and are also exactly those
most likely to be obtained by double hashing. The effect of our results is to show that
the clustering effect is negligible in the limit.

The most outstanding open problem left open by this research is whether one can
extend the argument to work for all (Y, 0 < 01 < 1. The proof also can be applied to a
modified double hashing algorithm, in which b(K) is restricted to a linear segment of the
table of size Am, for any fixed h, 0 < h < 1. The number of probes in the modified
algorithm can be proven to be asymptotically equal to that of double hashing. This
modified algorithm allows us to handle tables of nonprime size. Perhaps we can prove
this for h(K) restricted in any subset of size Xm. A number of purely number theoretic
questions about arithmetic in the finite field 2, of m elements also arise (m is prime).
We make the following two conjectures: (1) Let I be fixed, 0 < I < 4, S = {l,..., ml},
T any m’-element subset of 2, , ST = {it 1 s E S, t E T}. Then as m -+ co, there exists
a small constant E such that / ST 1 2 mar+; (2) if 0 < x < rnl12, then no set of x elements
of 2, can have more than 0(x2/k) arithmetic progressions of length K among its members,
for any k = 1, 2,..., X. Establishing either of these conjectures would prove double
hashing equivalent to uniform hashing for all a.

In spirit our techniques are mostly akin to the probabilistic method of Erdiis [4]. It is
to be hoped that this powerful method will be used as successfully in algorithmic analysis
as it has been in pure combinatorics.

2. THE ABUNDANCE OF NEAR-RANDOM SBTS

We will use the terms entry, cell, slot, and point interchangeably to denote a position of
the table. The word element or the adjective occupied will be used to distinguish the
occupied positions. If we consider an arithmetic progression x, x + d, x + 2d,..., x + kd
(where we interpret all algebraic operations mod m), then d will be called its distance and k
its length. We will speak of it as an arithmetic progression coming to x. If x + d, x + 2d,...,
x + kd all lie in some set S, then we will speak of it as an arithmetic progressionfiom S.

DOUBLE HASHING 235

Given a point x and a set S C (0, l,..., m - I} of cardinality oLm, the expected number of
arithmetic progressions of length K coming to x from S is approximately orkm, when we
consider all such sets equally likely. This is so because there are (m - 1) choices for the
distance d and for each such progression we have a probability of

C(m - k, am - k)/C(m, am) - (Y*

of belonging to S. We begin this section with a study of the tail of the hypergeometric
distribution and the Farey subdivision of the circle. Using these results we then prove
that except for a fraction of selections of S which is exponentially small, the number of
arithmetic progressions of length k coming from S to x will be in the range arkm(l f S),
for any small positive 6. This result gives us hope to prove what we want, as it shows that
sets with an abnormally high number of arithmetic progressions are exceedingly rare.

2.1. The Lattice of Arithmetic Progressions Coming From a Set to a Point

Let 2, denote the additive group of integers modulo m. We can think of these integers
arranged in a circle, with 0 following m - 1, as depicted in Fig. 2.1 .l .

FIG. 2.1.1. The additive group Z, .

In the entire context of this chapter m is a (sufficiently large) prime number. For any
subset H C 2, we can count the number of arithmetic progressions that begin at 0
and whose next k elements lie in H. By an arithmetic progression we mean a sequence
x0 , XI ,***, xk , such that x0 = 0, x1 , xa ,..., xk are elements of H, and X~+~ - xi (mod m)
is the same for all i = 1,2,..., k - 1. (The point 0 need not itself belong to H.) The
prima&y of m guarantees that all the xi will be distinct. We will speak of such an arithmetic
progression as a progression of length k coming from H to 0. We can generalize this
concept if we allow that for each i, 1 < i < k, we specify whether the corresponding
element of the progression is to be in H, or in the complement of H. Thus we arrive at
the concept of a type of a progression. A type 7 of length k can be thought of as a Boolean
vector of k bits. An arithmetic progression of length k coming to 0 is of type 7 if the ith
element of the progression is in H or in the complement of H, according to whether the
ith bit of 7 is a 1 or a 0. A 1 of the type will also be called a hit, whereas a 0 will be called

236 GUIBAS AND SZEMBRFDI

a miss (for obvious reasons). We will display a type by writing down the corresponding
bit vector, e.g., T = (10110001). Any typ e r has a length that will be usually denoted by k,
and a number of hits, that will be usually denoted by 1,O < I < k. Thus the above type
has k = 8, 2 = 4. We will reserve the expression “a progression of length k coming from
H to 0” to mean a progression of the type (11 ... 1) with k hits. For any type 7 and set H
we can consider all the progressions of that type coming to 0. We will speak of these
progressions as belonging to 7. For a fixed length k, the set of all types of that length forms
a Boolean lattice (or algebra), in the usual way. Figure 2.1.2 illustrates some of the ordering
relationships.

FIG. 2.1.2. The lattice structure of the types of arithmetic progressions.

The above lattice structure will not be important immediately, but will play a significant
role in the latter half of this paper.

To fix the ideas let us now confine our attention to arithmetic progressions of length k
belonging to the type of all hits. Clearly the number of progressions belonging to this
type depends heavily on the set H. We can expect at most to make a probabilistic state-
ment about the distribution of the number of these arithmetic progressions. We will be
interested in such an estimation for large m with H of specified cardinality 1 H 1 = Trn,
where 0 < q < 1. All subsets of this cardinality will be considered equally likely. As we
let m get large, we will allow both k and 7 to vary with m. However, in order to make
our argument work, we will see that we have to restrict the growth of k and/or the speed
with which 77 can approach 0 or 1. In this and all subsequent sections, unless otherwise
stated our 0 and o notations will always refer to m - co, The implied constants, unless
otherwise stated, will be absolute.

What is the expected number of arithmetic progressions of length k coming from H
to 0 ? There are m - 1 arithmetic progressions in 2, coming to 0, one for each possible
distance 1, 2,..., m - 1. Each such progression occurs in H with probability

DOUBLE HASHING 237

if k is suitably small (log K < (4 -) 1 g E o m will do, though in our applications we will
always use a k that is O(log m)) and r] is bounded away from 0. Thus the expected number
of arithmetic progressions of length K coming from H to 0 is (1 + o(1)) $m. Let 6 denote
any small positive constant. In the following three sections we will prove that the fraction
of choices of H for which the number of these arithmetic progressions is outside the range
TLm(l f 6) is exponentially small in m. By exponentially small we mean that there exist
positive constants C, s such that this fraction is

exp[-CX4qkm/(K8 loga(q-“S-l))]

provided Tkm > mu, where ~1 denotes any positive constant.
Our method is briefly the following. In Section 2.2 we consider the hypergeometric

distribution, which arises when we compute the probability that two subsets of size am,
/3m of a set of m elements have an intersection of the expected size a/lm. We show that the
probability of the intersection having a size outside the range @m(l & E) is exponentially
small in m. In Section 2.3 we use the Farey series to subdivide the circle formed by the
reals (mod 1) into arcs, such that all arcs except those containing certain fixpoints have
the property that any two among such an arc’s first K multiples are disjoint. By the jth
multiple of an arc (interval) [X, y) we mean the arc [jx, jr) (mod 1). In Section 2.4 we use
this subdivision, together with our estimation of the tail of the hypergeometric distribu-
tion, to prove the desired result.

The idea of Section 2.4 can be illustrated by an example. Suppose k = 2 and consider
an arc [x, y) which is disjoint from the arc [2x, 2y), as shown in Fig. 2.1.3.

Now suppose we pick H, a random set of qrn points of the circle. What is the expected
number of arithmetic progressions of length 2 coming from H to 0 whose first point lies

J(2x.2~)

FIG. 2.1.3. An illustration of the “pull-back” argument.

238 GUIBAS AND SZEMEREDI

in the set J(x, y) = {z E 2, 1 x < (z/m) < y} ? Instead of repeating the argument given
earlier, we can proceed as follows. The interval J(x, y) has size (y - x)m. Consider the
set Z,k Y) = (2~ I 2 E Jh, Y)) C J&G 39. Th is set also has cardinality (y - x)m, and
is the locus of the second points of progressions whose first point is in J(x, y). We expect
(y - x)ym of the points of 2 J(x, y) to be hit by H. The set of hit points can now be
“pulled-back” to J(x, y) to give us the candidate first points of these progressions. Since
Jb Y) and JCh 2 y 1 are disjoint, the expected number of points in this subset of J(x, y)
that will be hit is (y - x) Tarn. So (y - x) T2rn is the desired average. This argument
illustrates how we can translate our knowledge of the probabilities for the size of set
intersections to probabilities for the occurrence of arithmetic progressions in H.

All of the above remarks apply verbatim to types other than the type with K hits. If our
type has I hits then we only need to replace qk by $(l - ~)~-l everywhere in the above
discussion, and restrict 77 away from both 0 and 1. Circular symmetry implies that our
results also hold for any point of 2, , not just 0. Our method solves the corresponding
problem when we do not allow wrap-around or when we specify an upper bound on the
number of times we can wrap around. We do not need this result, so we will not dwell
on it any longer here. We will, however, need a slight generalization of the case k = 2
shown above. Given two points x, y E 2, , we will say that these points are in the ratio
a : b if xb = ya (mod m). Given a fixed ratio a : b, 1 < a, b < k, we will want to estimate
the number of pairs of points (x, y) of H that are in the ratio a : b.

2.2. The Tail of the Hypergeometric Distribution

In this section we estimate the tail of the hypergeometric distribution a specified
percentage away from the mean. Properties of the hypergeometric distribution are
discussed, for example, in [5]. Since we are interested in large deviations, the normal
approximation will not be useful to us. Instead we will need an approximation more like
the one done for the tail of the binomial distribution in [13].

Suppose we have a sample space of size n, and we select from this space two subsets,
one of size oln, the other of size ,%(O < LX, fl < 1). The probability that the cardinality
of the intersection of the two subsets is k is

ak = C(WZ, k) C((l - ol)n, /?n - k)/C(n, /3n).

f 7 9
choose k of choose others total number of
/3n’s from from rest ways to choose
an of ?I

The expected value of k is easily computed to be q%(l + o(1)). We will estimate the
probability that k lies outside the range c&z (1 f e). For this section only, our 0 notation
will refer to n --f co.

THEOREM 2.2.1. Let Y(n, a, p, E) denote the probability that if we randomly select
two sets of sixes oln and /In, respectively, out of size n, their intersection will have cardinality
outside the range &a(1 & 6). Then as n --+ 00, provided

O<%B and a(1 + c), B(1 + c) < 1,

DOUBLE HASHING

wkere a, /3, f can vary with n, we ?zave

239

Y(n, a, /?, l) < K(1 + l/e) e-++)asn,

whey(e) > (1 ;t- e) lOg(1 + l) - E + *e”[@/(l - a)(1 - B) + 41 - a) + Ml -RI
and K is an absolute cOn&nt.

The same conclusion holds if one of the two sets in question stays fixed.

Proof. We will first estimate the tail of the distribution above the mean. The tail below
can be estimated in an essentially identical fashion.

We wish to estimate the sum

c ak = c C(an, k) C((1 - a) It, p?J - k)/C(n, @).
k>Lx8nu+t) k>ewl+E)

Note that the ratio of two successive terms in this sum is

which is a decreasing function of k in the range of interest, i.e., q3n < k < an, /In.

For k = @z(l + C) this ratio is less than

It easily follows that p < 1. Therefore our sum is majorized by a convergent geometric
series of ratio p, and we get a bound of

[l/(1 - p)] qk% ~Pq + 41 C[(l - 4% (B - 41 + 4)4/% lw

Since, as we can easily check,

l/(1 -p) = 1 + (1 - (Y -O1e)(l -B-&)/e < 1 + l/E.

we are only left with estimating the density of the hypergeometric distribution at k =
c&(1 + E), as given above.

We will use Stirling’s approximation for the factorial:

log n! = n log n - n + Q log n + 4 log 2?r + 0(1/n).

From this we can easily derive the following fact:

log C((x + y)n, %?I) = (n + $)((x + Y) lo!& + Y) - x 1% x -Y 1% Y) - B 1% n + O(l)*

240 GUIBAS AND SZEMERFDI

We can now apply this fact to the binomial coefficients we have and obtain after simplifica-
tion

The following two inequalities are elementary:

(1 +x) log(l + x) B x for x 2 0,

(1 - X) log(1 - X) > --x + (42) forO<x,< 1.

Since a(1 + c) < 1 is equivalent to CYE/(~ - a) < 1, and similarly for /3, we can apply
these inequalities to the above expression to obtain the upper bound

-we + d[(’ + 4 ‘og(l + 4 - el
-+ + 4%2/2(1 - /3)

-ctpc + cP/%2/2(1 - LX)

+ 4wh

from which the conclusion of the theorem is immediate.
For the lower tail a similar argument gives an upper bound of

-[$[(I - c) log(l - c) + c] + &+%a/(1 - or)(l - B)]n + O(1).

Now (1 - 6) log(1 - E) + E > (1 + E) log(1 + E) - E and the theorem follows. 1

Remark 1. Notice that the above argument does not require E to be small.

Remurk 2. If, however, E is small, say E < 6 , then de) 2 (1 + l) log(1 + c) - E >
Cc2 where C depends on Q . If &%rr2/log(1 /E) > N, where N is a sufficiently large constant,
then we can take C so small that the factor K(1 + 1 /e) is absorbed in the reduced exponent.
Then we can state our conclusion as

COROLLARY 2.2.1. Y(n, CL, /3, 6) < exp(-Ck2c&) for E < E,, , +zc2/log(l/~) > N, N
and C positive constants depending on e,, .

This is the form in which Theorem 2.2.1 will be used most often. In our applications,
in fact, c@rr2/log(1 /c) will tend to CO with n.

DOUBLE HASHING 241

The key property of our estimate is that it is exponentially small in n. An estimate
obtained by using the variance and Chebycheff’s inequality can only give us a bound for
this tail that vanishes no faster than an inverse power of n.

2.3. The Farey Subdivision of the Circle

The Farey series F, of order n is the ascending series of irreducible fractions between 0
and 1 whose denominators do not exceed n. For example, F5 is

O/l, l/5, l/4, l/3,2/5, l/2, 3/5,2/3,3/4,4/5, l/l.

The Farey series possesses many fascinating properties [9].

Property 1. If h/k, K/k’ are two successive terms of F, , then kh’ - hk’ = 1.

Property 2. If h/k, h”/k”, and k’/k’ are three successive terms of F,, , then

h”/k” = (h + h’)/(k + k’).

Property 3. If h/k, h’/k’ are two successive terms of F, , then k + K’ > n.

Property 4. If n > 1, then no two successive terms of F, have the same denominator.

Property 5. The number of terms in the Farey series of order n is asymptotically
3n2/rf2 + O(n log n).

We will be interested in the circle of the reals (mod I), denoted by U. The set U
forms a group under addition. Consider the mappings

Ti: x -+ ix (mod 11, XEU

for each i = 2, 3,..., k. (Tl is the identity.) It should be clear that thefixpoints (i.e., points
x for which Tjx = x for some j) of these mappings are the fractions a/b with 0 < a <
b < k. These are exactly the elements of F,-, C U.

We wish now to partition U into a collection of disjoint intervals (taken to be left closed,
right open) J with the property that (1) if VE J, then T,V, T,V, T,V,..., T,V are all
disjoint if V does not contain one of the above fixpoints, and (2) the V E J that contain
a fixpoint can be made arbitrarily small in length.

Let vn denote (the cardinality of F,) - 1. We now consider the subdivision of the
circle defined by the Farey series F,,-, . Clearly this contains the fixpoints discussed
above (F,-, C F,,-,) and subdivides the circle into v2k-2 intervals. We have

LEMMA 1. No two jixpoints (i.e., elements of Fkml) are adjacent in F,,-, .

Proof. If fixpoints h/k, , h,/k, are adjacent in F,-, , then k, + k, < 2k - 2. Hence
by Property 3 they cannot be adjacent in F2k-2 . 1

For i = 1, 2 ,..., IJ++~ , let us name Li and Ri , respectively, the intervals of the above
subdivision that lie to the “left” and to the “right” of the ith fixpoint (in the standard
order).

242 GUIBAS AND SZEMEREDI

From Lemma 1 it follows that the other endpoint of each L, and R, is not a fixpoint.
We name the remaining intervals Ni , i = 1,2 ,..., (~~,+a - 291~~~).

LEMMA 2. Let X stand for one of the Li or Ri . Then any two of

TIX, T,X,..., TkX

will overlap only if they have an endpoint in common.

Proof. Let the ith fixpoint be h,/k, and to make things concrete suppose we are dealing
with Ri (the case of Li is entirely analogous). Let h,/K, be the other endpoint of Ri .
Then by Lemma 1, h/k, $FkeI , so k, 2 k. Then the length of R$ is

Thus the length of any of the TjRi is < (l/k,). But all multiples of (h/k, , h,/k,) start at a
multiple of k& . These multiples are spaced at least l/k, apart, so not two of the
multiples of Ri will overlap unless they share a common left endpoint. 1

LEMMA 3. Let Y denote WIEZ of the Ni . Then the intervals

T,Y, T,Y,..., T,Y

me all disjoint.

Proof. Suppose intervals A and B in the above sequence intersect. By construction A
and B do not share any endpoints. Thus if they intersect, we can assume that the left
endpoint of B lies within A. Let Y be (h,/k, , h,/k,). The distance between the left
endpoints of A and B cannot be less than l/k, , since the left endpoints are multiples of
l/K, , since k, > k as no endpoint is a fixpoint. But this contradicts our assumption that
the left endpoint of B lies within A. 1

We now describe how to subdivide the Li and Ri further, so as to make the intervals
with an endpoint at a fixpoint as small as we please, while still maintaining the property
that all other intervals have disjoint multiples. We describe the construction for Ri ,
that for Li being analogous. Let us define for each i a subdivision into intervals RSij ,
j = 1, 2,..., 2, and RM, . If Ri = [x, y), these subintervals are defined as follows:

RSij = [X + ((k - I)/k)i(y - x), x + ((k - l)/k)j-l(y - x)), j = 1, 2,..., I;

RMi = [x, x + ((k - l)/k)‘(y - SC)).

The following facts are then obvious:

(1) RM, U u,“-, RSij = R,;

(2) any two of RS,, , RS, ,..., RSiz , RM, are disjoint,

(3) RS,, has length ((k - 1)/k)‘-r(y - x)/k, and RMt has length ((k - l)/k)yy - x)
(y - x = length of Ri).

DOUBLE HASHING 243

LEMMA 4. Let Y denote any of the RS,, . Then the intervals

T,Y, T,Y,..., T,Y

are disjoint.

Proof. We first prove the lemma for i = 1, i.e., for a subdivision of the interval R,
whose left endpoint is 0 (= 1). As l/K E Fzkm2 , R, C [0, l/K) so we do not have to worry
about wrap-around problems for any of the RSlj . To complete our argument we only
need show that the right endpoint of the t - 1 multiple does not exceed the left endpoint
of tth multiple. This is tantamount to

or
(t - l)((k - 1)/K)+’ < 1((k - l)/k)j

@ - 1)/t < (k - 1)/k

which is certainly true, as t only takes the values 1,2,..., K. This subdivision is nicely
illustrated by Fig. 2.3.1.

non-overlapping multiples
of a subinterval

FIG. 2.3.1. The subdivision into intervals of nonoverlapping multiples near a fixpoint.

Now to handle the case of i > 1 we need only recall from Lemma 2 that two multiples
of Ri overlap only if they have a common left endpoint. But then the situation at each
such endpoint is a subcase of the situation described above for i = 1 around 0. So by the
same argument the multiples of ESij are disjoint. 1

We can of course repeat the whole construction and the proof of Lemma 4 for the L, .
Thus we obtain intervals LS,, , j = 1,2 ,..., I, and Lilfi that also satisfy (l), (2), and (3)
above.

Before we recapitulate what we have derived in this section we need to make a comment
about the lengths of the intervals. Each Ri or Li , being an interval [~/IQ , h&J between

244 GUIBAS AND SZEMBBEDI

two elements of Fzk--2 , has length I//& > 1/4k2. On the other,.hand,,.either ki or K, is
> k, so the length is at most l/k.

Combining all our constructions we have the following theorem.

THEORE~I 2.3.1. We can construct a partition of the reals mod 1 into &s@+t subintervals

Ni , i= 1,2 ,**-, Wk-2 - 26Dk--1 ,

LSij 3 LM,) R&j 1 RMi, i = 1, 2,..., yk-1) j = 1, 2,..., 1

so that

(1) each of the Ni , LSij , RSij has (a) disjoint$rst k multiples and (b) length at least
((k - 1)/k)z-1/4k2, and

(2) each of the LM, , RM, has (a) an endpoint (the right of left one, respectively)
which is afixpoint and(b) length at most ((k - l)/k)‘/k. ’

2.4. The estimation of the Arithmetic Progressions, and the Prevalence of Randomness

We first map intervals on U to intervals on 2, . Corresponding to an interval [x, y) C U
we have the set of all i E 2, . Corresponding to an interval [x, y) C U we have the set
of all i E 2, with the property that x < (i/m) < y. (This should be interpreted cyclically;
that is, if x > y, then we mean x < i/m or i/m < y). We will now use the names of the
intervals introduced in Section 2.3 to denote also the corresponding intervals in 2, .
For an interval T = [x, y) we will denote by t its length in U (t = (y - x)) and by / T 1
the number of integers it contains in 2, . Clearly we have 1 T) = (number of i such that
xm < i < ym) = [yml - [xml. Thus

IT] =tmf2.
We will write this as

I T I = tm(l f E), (i)

where l will be a quantity used below. This is justified as long as E is not too small. As
we will see below, the smallest E we will use will be Q(l/(log m)C) for some positive r, while
the smallest t will be such that tm > mA for some positive h. So as’m -j CO, Eq. (i) is
justified; its form will simplify some of the computation below.

Recall that we are selecting a random subset H of 2, of cardinality +m. For any interval
(in fact any subset) T of 2, , we can ask for the number of elements of H that will fall
in T. From Theorem 2.2.1 we know that the number of these elements will be) T / T(1 *tc),
except with probability Y(m, / T I/m, 7, E), i.e., it wiil be +m(l f c)” except with proba-
bility Y(m, t(1 f E), 7, c).

Consider now the collection D of intervals composed of all the Ni , LS,j , RS,, , and the
collection C composed of these same intervals and their first k multiples. In this latter
case we are dealing with a total of k(&,-,l + yzrp2 - tin-r) intervals. For each interval T
in the collection C we assume that H will intersect it in +t(l + 6)” elements, as’ in the

DOUBLE HASHING 245

discussion above. This will always be the case except for a fraction of choices of H that
is bounded by

Q = g Y(m, t(l f 4, ‘I, 4

(This argument does not need any independence assumptions concerning the various
choices of T.) Thus with probability 1 - Q, our choice of H will intersect each interval in
the collection about as often as we expect.

We now restrict T to be one of the elements of D. In the sequel E will denote a small
quantity that will define all our relative errors. We allow E -+ 0 as m -+ CO, and we also
allow E to depend on our choice for T. (We write or when we need to make this dependency
explicit.) Let us consider the first K multiples of T, and focus our attention on the last one
T,T. This interval has tkm(1 f E) elements, and will almost certainly receive tkTm(1 & 6)”
elements of H. Within T,T we have a subset S, of cardinality tm(1 & E), consisting of
those elements that are k-fold multiples of elements of T. How many elements of this
subset will H hit? (Note that these points are the endpoints of arithmetic progressions
starting at 0, having their first element in T,..., and their kth in T,T.) Now within T,T
itself we can invoke Theorem 2.2.1 to show that, except for a fraction of possibilities that
does not exceed Y(tkm(1 f E), (l/k)(l f E)~, q(l f E)~, c) the number of elements of S,
that H will hit will be qtm(1 * c)‘.

Consider now the +m(l & 6)’ progressions thus specified. We apply the “pull-back”
process illustrated in Section 2.1 and in Fig. 2.4.1. What about the k - 1 points of these
progressions-how many of these points will be hit by H? By construction, all these
points from a subset S,-, of TkpIT, an interval &joint from T,T. By Theorem 2.2.1

FIG. 2.4.1. The pull-back process.

246 GUIBAS AND SZEMEREDI

confmed now to the interval T,-,T we see that the intersection of S,-, and H will be
$+t(l & l)% points, except with probability Y(t(K - l)m(l f E), (r]/(k - l))(l f E)~, E).
(To amplify, we have here an interval of t(K - l)m(l -& E) points; the set S,-, is of size
(7/(K - l))(l f E)* times the size of T,-,T; and ~(1 i 6)” is the probability that a point
in TkplT will be a hit by H. The basic rule we are using throughout is that if x =
X(1 & l)~, y = Y(l f l)j, then my = XY(l i ~)~+i, x/y = (X/Y)(l * ~)i+i. To make
these rules precise it is best to define x = X(1 f l) to mean x E (X(1 - E), X/(1 - e)).
Note that this redefinition of 1 f E leaves Theorem 2.2.1 valid.)

We now have a set of progressions whose last two elements are guaranteed to be hit by H.
At the next step we consider the k - 2 points of these $%z(l f e)13 progressions, which
define a subset S,+ of TtieBT. By analogous computation we obtain that q3tm(l f ,)rs of
these points will belong to our random set H, except with probability Y((K - 2)tm(1 & E),
(q2/(k - 2))(1 It 414, vu zt ET, 4. w e now continue in this fashion with the (K - 3). . , , 1
points of the arithmetic progressions. Figure 2.4.1 depicts this pull-buck process in which
successively commit H in the intervals T,T, i = k, k - l,..., 1. At the last step of this
process we are considering T itself. After that step the number of candidate arithmetic
progressions left will be $~m(l f E) 6k+1. These are now confirmed to be entirely in H.
The fraction of choices for H that we have eliminated in this process is bounded by the sum

k-l

z. Y((k - i) Wl 2~ E), (+l(k - 1))(1 !C •)'j~+~, ~(1 & +, 4

of all the excluding probabilities.
We now conceive of this process of selection of candidate arithmetic progressions as

being carried out for T referring in turn to each of the intervals in D. The total fraction of
choices for H thus excluded is bounded by

k-l

W = c c Y((k - i) tm(l 21 ET), (W - 1))(1 f w)~~+~, ~(1 f crj3, ET).
TED i=o

What has all this accomplished ? After excluding the choices for H accounted for in Q
and W, we can be sure that the number of arithmetic progressions of length k coming
from H to 0, and whose first point is T, is rlktm(l f •~)~~+l, where T is any of the above
intervals. Thus the total number of arithmetic progressions coming to 0 from H of length k
is

&l7lWl f 46k+1 + E

where E is a correction coming from the fact that we cannot apply our argument to the
fixpoint intervals LM, and R&l, . But each of these special intervals cannot contribute
more arithmetic progressions than its length. Thus the error committed is bounded by

0 < I E I < %‘,[(l/k)((k - l)/Vm + 21.

(See Theorem 3.3.1 and recall that there are 2vk-r such intervals.)

DOUBLE HASHING 247

Now let 6 be a given small positive constant. We choose I to be the smallest positive
integer such that

2~-~(l/k)((k - l)/k)“m < vkm8/4. (ii)

Thus I = [(k log(l/v) + log vk-r - 3 log 2 + log(l/6))/(log((k - 1)/k))]. By choosing 6
small enough, and using the fact that 1 log(1 - l/k)\ > C/k for k > 1 and some positive
constant C, we see that 2 will always satisfy

I> 2k. (iii)

Since Tkm > mu it is also clear that for m sufficiently large

and so
(l/k)@ - I)PVm 2 2,

I E I < 2pd(W)((k - l)/k>“m + 21 B qkmW.

The total number of intervals in our partition is then

(iv)

F = &k-I(2 + 1) + TZk-2 - 2vk--1 = ‘?‘2k-2 + 21vk-, *

If t denotes the length of an interval in our collection D, then from Theorem 2.3.1 we have

t < ((p - 1)/k)1-1/4k2 3 qk8/(32vk-Ik(k - 1))

> Srf8/k4 for some positive constant S.

We can therefore write

Sq4S/k4 < t < l/k.

(See Properties 3 and 5 of Section 2.3.)
For an interval T E D of length t, let + be defined by

(v)

l/(1 - eT) = (1 + 8/(2tF))1’(6k+1),

so we assign larger relative errors to smaller intervals.
Now we are ready to total the number of arithmetic progressions we have of length k

coming from H to 0. This number cannot exceed

rl”m(W) + C q”mt(l + V@Ft)) < q”m(W + rlkm + qkm(W’) < rl”m(l + 6).
TED

in order to obtain a lower bound we use the elementary inequality

(1 + x)-” > (1 -X)” for 1 > x, y > 0.

Then we have

1 - ET = (1 + S/2@)-W”+l’ > (1 - 8/2tF)1/‘6k+1).

248 GUIBAS AND SZEMEREDI

We must avoid, however, situations where 6/2tF comes too close to 1. We stipulate
therefore that we will not attempt to maintain a lower bound during the pull-back
process for an interval T, unless tF > 6. Thus we will ignore lower bounds for intervals T
much smaller than the average (the average length of an interval is l/F). As our intervals
form sequences with lengths in geometric progressions, we expect that the total length of
the uncontrolled intervals (we include in this the L&Ii and RM,) will be small. First of all
it is easy to see that if S is small enough then none of the intervals Ni will violate the
condition tF > 6. In each sequence the total length violating our condition is certainly
less than

(6/F) f ((k - 1)/k)” = Sk/F
i=O

for a total contribution not exceeding

But we have F 2 2&.-r > 4k4++r by (iii), and so the total length of the uncontrolled
intervals does not exceed 612. Therefore the total of progressions we are counting is at
least

1 qkmt(l - (6/2tF)) > (1 - (a/2)) vkmt - vLm(6/2) = Tkm(l - 6).
TED
M-as

In summary, the total of our progressions is

as we had hoped to prove. (Note again 1 + 6 < l/(1 - S).)
This, of course, is a useful result only if we can show that the sum Q + W of the

excluding probabilities is small. To prove this we will need to restrict our r] and k. We will
assume that

Tkm > mu, k = O(log m)

where p is any small positive constant. We now show that each term in Q or W is ex-
ponentially small in m. We will determine an upper bound for the largest term, which
certainly occurs in W. A candidate term has the form

exp(-v(cr)(1 * ,T)cei+s)~(sk+l)~“+ltm).

We first treat the 1 - cT case. For any interval T we are attempting to control we have

1 - or > (1 - (S/2tF))ll(‘3k+l) > (#/@k+l).

Thus the absolute value of the above exponent is at least

DOUBLE HASHING 249

For the case 1 + cr. we have

(1 + ww) ‘6r+W ‘6k+l’~i+‘tm ’ > (1 + (~/2tF))‘6i+6)/‘6k+6,rli-ltm

> (s/2F)(6i+6)/(6k+6)t6(k--i)/(6k+6)rli+lm

>, (Gqt 6(k--i)/(6k+6) i+lm
rl 9

as certainly we can take 6 < 1. Let now t have its smallest value STk8/k4 (from (v)) and
obtain a lower bound of

S(a2/(2FkQ)) ?(6klk-i)/(6k+6))+i+lm 3 (Sa2/(2Fk4)) qk+lm.

Thus the largest term does not exceed

exp(-v(eT)(S82/2Fk4) qk+lm).

Finally for P)(+) we have

P’(9) 3 (1 + 9) kdl + ET) - ET

by Theorem 2.2.1; note also that (1 + x) log(1 + X) - x is an increasing function of x.
Now

ET = 1 - (1 + (S/2tF))-li(fJk+l)

>, 1 - (1 + (Sk/2F))-1/‘6k+1).

Since 1 - (1 + x)--r/p > c&/p) if 0 < x < p < 1, where p is an integer and c a constant
depending on p, we can conclude

9 3 (Q/F),

for some positive constant c, , if 8 is small-say 6 < 4. Therefore

?+T) 2 dclw a (c2~2/~)

for some other positive constant c2 . Combining all of the above we see that there exists
. . a posmve constant ca such that no term of Q or W exceeds

exp(-c36%lk+lm/k4F3).

From the definition of 2 we see that

I = O(k2 log(l/T) + k log k + k log(l/6)), F = O(k21)

where the implied constants are aboslute. We can finally find an absolute positive constant
C that incorporates also the effect of these 0 constants and that of adding all the terms in
Q and W. For that constant C we can then conclude that

Q + W < exp(--Cb “+lm/[kl”(k log l/q + log k + log l/8)7).

250 GUIBAS AND SZEMEREDI

We are now basically done. It only remains to check that the assumptions we used were
justified. It is very easy to check that assumption (i) is satisfied for the values of l r we have
chosen. For our repeated applications of the set intersection theorem we need to know that

t/(1 - 9-1 < 1, q/(1 - ET)4 < 1.

Now

t/(1 - +) = t(l + (6/2tF))‘/(6’c+1) < t (1 + 6/(2(6k + 1) Ft))

< t + 6/(2&k + 1)F) < 1 since t<&,A<l.

Now note that when we choose q. we can assume that ~“/(l - ~r)~~+l < t , for certainly
we cannot have more progressions than the length of T. Thus to check v/(1 - ~r)~ < 1
we look at ~~“+l/(l - •r)~(~~+l). Now

$%+I/(1 - ET)4(6k+l) z ($/(l - ,T)6k+l)4q2”+1 < +k+l < 1.

Thus q/(1 - •r)~ < I is also proved. This completes the argument for the following
result:

THEOREM 2.41. If TV, 6, are positive constants while 7, 6, and k can vary with m so that

O<r]<l,

1 < k = O(log m),

Tkm > mu,

0 < 6 < 66,

then there exists a constant C depending at most on 8, such that as m ---f 03, except with
probability not exceeding

exp(-C84r]k+1m/[k16(k log l/7 + log k + log l/8)7),

a selection H of qrn points in Zm will have

rl”m(l f 4

arithmetic progressions of length k coming from H to 0.

THEOREM 2.4.2. If 7 is a type of length k and 1 hits, then Theorem 2.41 applies to the
enumeration of progressions of type T coming to 0, if throughout we replace 7k by +(I - v)“-~.
That is under the assumption that

#(l - q)k-zm 3 mu,

we can conclude that the number of arithmetic progressions of type 7 coming fi-om H to 0 will be

q(1 - #+“m(l * 6),

DOUBLE HASHING 251

except with probability not exceeding

exp(-CS4T”+l(1 - ~)~-z+lm/[kls(k log(q-‘(1 - 7)-l) log k + log l/8)7).

Proof. In the argument above intersect with H or the complement of it according
to whether the type specifies a hit or a miss. 1

COROLLARY 2.4.1. The conclusion of Theorem 2.4.1 OY Theorem 2.4.2 can be made to
apply simultaneously for all progressions coming to all points x in Z, and all types not
exceeding a certain length k,, = O(log m).

Proof. Simply look at the sum of all the excluding probabilities. The total number of
conditions we are imposing is a polynomial in m (e.g., (number of types) x (number of
points)): Now use the fact that P(m) exp(-Crmfi) < exp(-Czmp) as m -+ co if P denotes
a polynomial and Ca < C, . 1

This last corollary illustrates the power of the exponentially small bounds.

COROLLARY 2.4.2. Undo the conditions of Theorem 2.4.1, a selection H of qmpoints in Z,
will have no more than I.

2q2m

pairs (x, y), x, y E H, of points in the specified ratio a : b, 1 < a, b f k, except withproba-
bility not exceeding

exp(-Cq”+‘m/[kt6(k log l/v + log k)3]).

Proof. Assume the ratio a : 6 is in lowest terms. Then apply the argument of this
section while only considering T,T and T,T in the pull-back process for each interval T. i

The following generalization of Corollary 2.4.2 is needed in Section 3.3 The arbitrary
notation used below is chosen to correspond to the context of that section.

THEOREM 2.4.4. Let A denote a fixed subset of Z, of cardinality at least m1/4+%. Let
7 = m-114-sl. where 6, , 6, are small positive constants satisfying 6, > 6, . Then there exists
a small positive constant 6 such that: if a subset H of qm elements is randomly chosen in Z, ,
then the number of pairs of points (u, v) in H with v E A, and u, v in theprespecijed ratio a : b,
1 < a < b < k = O(log m), is O(T 1 A / me6), except with probability that does not
exceed exp(-ma).

Proof. Let 6, be such that 8, < 6, < 6, . Consider the pull-back process for a certain
interval T of the partition. Let S, denote as before the bth multiples of points of T. Then
& is a subset of T,T. Let x denote the number of points of A in S, . We distinguish two
cases.

Case 1. x > m1/4+6s. We will apply the pull-back argument to only T,,T and T,T.
We start by a weak bound on the intersection of A and H in S, . What is the probability

252 GUIBAS AND SZEMEBBDI

that this intersection will exceed xm-6 in size, where 6 is positive but less than 8, ,a, - 6, ,
and 6, - 6, ? We use our Theorem 2.2.1. We have

a = x[m, B = 79

1 + E = m-“/q > m1j4.

Then

94~) a+ > [(1 + c> log(1 + E) - ~1 &Pm 3 [a log mm-8/77 - (m-“/T - 111 x7
> cm-8 = cm114+&-8

for some positive constant C. Thus the probability under consideration is exponentially
small, and we may assume that our intersection does not exceed XM-~. We now pull back
this intersection to T,T, thereby defining S, . This is a disjoint set from S, , and applying
once more our intersection theorem with E this time small, say E = 4, we immediately
conclude that, except with probability not exceeding

exp(-@r]~m-~) < exp(-m8),

the number of pairs (u, w) with u E H n T,T, v E H A A n T,T, u, v in the ratio a : b,
is no greater than

O(qxm-3.

Case 2. x < mW+% We now simply do not bother with the T,T step of the above
argument. Just pull back the entire A n S, to T,T in order to obtain S, . Thus S, has
size < rnIJ4+%, and since we are interested in maximizing the number of pairs (u, v),
we will in fact assume that S, has size m1J4+8a. Applying Theorem 2.2.1. to S, and H
we obtain that, except with probability not exceeding

exp(- C’XT) < exp(- C’m’*-“) ,< exp(-m”),

the total of pairs (u, v) with u E H n T,T, v E A n T,T (and a fcwtiori those for which
v E A n H n T,T) and u, v in the ratio a : b, is no greater than

0(x7) = O(ms3-81).

Now we sum the contributions over all T. The contributions from Case 1 are O(+%‘r~)m-~).
Since the mapping z --+ bz is l-l, we must have Zrx < j A I. Thus the total from Case 1

8 8 is O(v) A 1 m-8), which is at least Lm z- I- 8, by our assumption about the size of A. By
taking L sufficiently large (say L = Ck log m, for some constant C) we can make the
contribution of the fixpoint intervals negligible compared to this, say no more than
m8s-81. Also the contributions of Case 2 are no more than O(ks(log m) m8r81) (just let all
T’s have a Case 2 contribution), and that too is negligible.

By choosing the 6 in the statement of the theorem slightly smaller than the 6 we have
used in the proof, the result follows. I

DOUBLE HASHING 253

Clearly the results of the last Lemma and Theorem can also be generalized so that
they apply to all points and all ratios and types up to some maximum length K, = O(log m)
simultaneously.

In a certain light what we have shown is that the occurrence of one arithmetic progres-
sion of length K in H influences very little the occurrence of another such progression.
These progressions are nearly independent in the sense that they give rise to a distribution
analogous to that of independent Bernoulli trials. This is why the results of this section
could not have been obtained by variance arguments alone. It is interesting that for K = 3
a similar result can be proved using the exponential sums technique of analytic number
theory [7]. Unfortunately that proof does not appear to generalize to K > 3.

3. THE IMPOTENCE OF CLUSTERING

In this section we use the results of Section 2 to start up a process (called the extension
process) of looking at snapshots of the table as it fills up with double hashing. Between
steps of the extension process we can show that the effect of clustering is negligible, and
that we therefore never depart too far from the truly random situation. We begin by
showing how the near-randomness maintained by the extension process can be used to
derive the desired result.

3.1. The Seed Set and the Final Argument

In this section we prove that double hashing is asymptotically equivalent to uniform
hashing for 0 < a < 01~ by using the results of the following two sections. Here CX,,
denotes an absolute constant, $ < a,, < 5. Let us prestate here Corollary 3.3.1, which
is the result we will need:

COROLLARY 3.3.1. Given any LY, /3 such that 0 < p < OL < % , there exist a constant
C, and an initial conjguration of firn occupied positions such that for any small positive
constant 8, ;f we add (a - fl)rn points to the table using the double hashing process then,
except with probability less than exp(-C,m%), we will arrive at a configuration of am
occupied elements such that for each point x of the table and for each length k, 2 < k < k,’ =
C, log m the number of arithmetic progressions of length k coming to x from the occupied
points is akm(l * &k). Here the flm,, denote relative errors satisfying

and

(b) a”‘(1 + fa,k,‘) m < m1’2--6’,

where 6’ and 8, me smallpositive constants, and C, is a constant depending on 0 only.

254 GUIBAS AND SZEMEREDI

What is the average number of comparisons we need in order to find an empty slot in the
resulting configuration, using double hashing ? (Recall that, as in Section 1, we count the
final probe into an empty slot as a comparison.) As we make such a search, let p, denote
the conditional probability that we will make at least (I + 1) comparisons before we find
an empty slot, 0 < I < m, given that we hit at least one of the occupied positions. Thus
we must on the first probe (h(K)) select one position among the set S of occupied positions,
and then select a distance (g(K)) that leads to an arithmetic progression of length (at least)
I among elements of S. The average number of comparisons for an unsuccessful search
will then be

m-1

1 +a 1 Pz.
l=O

(9

We first dispose of the arithmetic progressions of length greater than K,‘. Let us consider
an occupied point x E S (all such points are equivalent for the computation below).
We claim that there are no arithmetic progressions coming from S to x of length exceeding
(m1@s’ + 1) 12,‘. This is so, since if we had such a progression, then we would have more
than m1/a--6’ progressions of length K,’ coming to x from S. (If d is the distance of the
original progression, then d, 2d, 3d ,..., (ml@s’ + l)d would all be distances of progres-
sions of length K,’ that are subsets of the long progression). But this contradicts condition
(b) of the above corollary. Now for lengths between K,’ and K,‘(m1/2-*’ + l), we can have
at most as many arithmetic progressions as we have at K,‘. The total contribution of these
to (i) is

k,‘(m’~2-6’+1)

am c
m1/2-6’ x l/m(m - 1)

k=k,’

7 7

choices for x contribution of probability of choosing
all distances a specific x and a
in question specific distance

= O(k,‘m-2S’) = o(1) as m--too,

since k,’ = O(log m).

EIere we have ignored the contribution of the excluded configurations, but these can
contribute at most a total of

m exp(-CC,msO) = o(1) as m+cc

maximum number of probes for any search to the mean, and so from now on they will
be ignored for good. For the shorter k we see that our corollary implies

pk = ak(l f &i,k), 2 < k < k,‘,

and certainly p, = 1, p1 = 01. So the contribution of short lengths to zp, is

1 + a + 5 or’(l f iv,,,) = 5 Uf f 0 = l/(1 - 4 i 0 + o(l),
1-z I=0

DOUBLE HASHING 255

where we have used conclusion (a) of the corollary and the fact that

f cd = o(1) as m+oo
z=k,'+l

since k,’ --f co as m + co. Combining all of our conclusions, we have proved that the
average number of comparisons needed to find an empty position in a table filled up
to load factor 01 as described in the corollary is

1 + a/(1 - 0) f me + o(l) = l/(1 - 4 i & + O(l)* (ii)

Unfortunately we are not done, because we did not start from an empty table. The double
hashing algorithm was applied only after an initial seed of /3m points was already strate-
gically placed in the table.

In order to complete our argument, we need to investigate the effect of these initial /3m
points. We have added (a - /l)m keys using the double hashing process. What if we had
added these same (a - /3)m keys to an initially empty table using double hashing ? Let us
select a specific hash sequence (h(K,), g(K,)), (h(K,)), g(K,)),... and so on. Let S denote
the set obtained by adding points with this sequence to the initial pm set, and S’ the
corresponding set obtained by adding points using the same hash sequence to an initially
empty table. Then we claim S’ C S. Consider the first point K in our sequence, whose
insertion would cause an alleged violation of this condition. Either our key K ends up in
the same position in both s’ and S, in which case there can be no violation, or our key
continues on a longer search path in S than it did in s’. But then the location where K
ends up in S’ must have already been occupied in S, and so again no violation is possible.
The above remark implies that the average number of probes to find an empty slot with
configuration S is an upper bound for C&+,, , i.e.,

or

CL, < l/(1 - a - B) + (a + B) fl + o(l),

by a simple change of variable. (Assume /3 is so small that 01 + /3 < 1.)
Next we get a lower bound for Ci,. We just saw that if we start with/3mpoints ratherthan

anempty table, we can only do worse. But how much worse ? Againlet us fix our attention to
the particular hash sequence on hand (k(K,), g(K,)), (h(K,), g(K,))..., etc. In the set differ-
ence S - s’ we have pm points. Now suppose we are at the final configuration S and let us
look at an arithmetic progression of length K of occupied cells in S coming to X. If this
progression contains at least one point in S - S’, we shall say that it is destroyed. (This
means that it contributed to the computation of p, for 01 but will not contribute to the one
for 01 - 8.) No point in S - S’ can destroy more than k such progressions, so the total
number of progressions of length K coming to x that is destroyed is bounded by kpm.
Of course we can never destroy more arithmetic progressions than there are, which is

256 GUIBAS AND SZEMERRDI

&z(l + fl=,,). Now let K,, = log(l/#log(l/a). Then th e number of progressions coming
to x of length greater or equal to $ that can possibly be destroyed is

m-1

k; akm(l + i&k) = O(akom) = 0(/w,

0

where we estimated the sum as we estimated sum (i) (using also the obvious fact that the
errors fl=,, are bounded for fixed k, as m --+ co). From 1 to k,, we can destroy at most

h2Pm = W log2(l //4m>

arithmetic progressions. Thus the total of destroyed progressions coming to x is

003 log2(l I&%

and we have shown

c;, > l/(1 - 01 - 8) - (a + B) 0 - O(B log2(l/P)) + o(l)

by arguing as in the previous paragraph.
To summarize, we have

l/(1 - a- B) - (m + 8) 0 - 0,8(/J log2(l/P)) + o(1)

< c;, < l/(1 - a- B) + (a + 8) 0 + o(1).

Since 8, fl can be taken to be arbitrarily small, we have proved

THEOREM 3.1.1. The average number of comparisons needed to jind an empty slot with
double hash& in a table of size m,$lled up to loadfactor 01, LY < a,, , is

c;, = l/(1 - a) + o(l) as m-co.

3.2. The Lattice Flows and the Extension Process

Let x be a point of the table, and let 7 be a type of length k with h hits and k - h
misses. If ym points of the table are occupied, 0 < y < 1, then the expected number of
arithmetic progressions of type 7 coming to x is yh(l - y)k-hm. In this and the following
section we show that if we start with a configuration of flrn occupied points in which
every point has nearly the expected number of arithmetic progressions of every type and
grow this table to oLm elements using the double hashing process, then if we only exclude
an exponentially small fraction of possibilities, we can be sure that the resulting configura-
tion of cllrn points will also have nearly the expected number of arithmetic progressions
of every type coming to every point.

To illustrate the argument we first discuss how we can prove such a statement if the
additional (a - p)m elements were randomly inserted. We add the new points in groups
of Trn at a time, where 7 is very small compared to (Y or /?. Suppose we currently have ym
elements in the table and are about to add Trn new ones. Fix a point x of the table and

DOUBLE HASHING 257

consider the arithmetic progressions of length k coming to x. The various types to which
these progressions may belong form a Boolean lattice, as illustrated by Fig. 3.2.1.

arrows indicate inter-type flows

"1" denotes a hit
"0" denotes a miss

FIG. 3.2.1. The lattice of types of arithmetic progressions of a given length coming to a point.

As the new Trn points are added, there will be flows upwards in this lattice, that is, some
arithmetic progressions will shift into types with more hits. For example, the first point
of a progression of type (001) may become occupied by one of the qrn points, whereas
the second may stay empty, thus causing the progression to shift into type (101). In
order to estimate the magnitude of these intertype flows we need to introduce some nota-
tion.

DEFINITION 3.2.1. Let x be a point of the table, r a type of length k, i an integer
1 < i < K, and r a configuration of ym occupied positions; then by S(i, T, x, F) we will
denote the set of the ith points of the arithmetic progressions of type T coming to x. We
also introduce the density

~(7, x, r) = I W, 7, x, r)l/m,

which is clearly independent of i (since m is prime).
Throughout the arguments that follow we will be dealing with inequalities on the

~(7, x, r). We introduce the symbol U(T, 7) to stand for any of U(T, x, r), where x ranges
over all points and r over all nonexcluded configurations of ym occupied positions. Thus
when we write

u(T, Y) = A(1 f P>>

We mean h(l -p) < U(T,x,r) < h/(1 - p) f or all x and r as described above.
We now present a heuristic argument for the case of random insertions. Assume that

our configuration r is such that U(T, y) = yh(l - Y)*-~ for all types 7, where h denotes

258 GUIBAS AND SZEMBBEDI

the number of hits and K - h the number of misses of the type. Thus S(i, 7, x, r) =
~“(1 - ~)k-%z. What happens to the arithmetic progressions of type 7 coming to x as
the new Trn points are added ? Consider a type 7’ which is 7 except a hit of 7 in the ith
position is a miss in T’, e.g., 7 = (101) T’ = (001) in the example above. Then for each
point of S(i, 7, X, r) that is hit by the vrn, a progression may change from type T’ to
type 7. This is illustrated in Fig. 3.2.2.

FIG. 3.2.2. The mechanism of intertype flows.

There are (1 - y) m unoccupied elements, of which we are choosing Trn, thus the
probability of selecting a point is ~/(l - y). By hypothesis the size of S(i, T, x, r) is
$+I(1 - y)k--h+l m, and therefore the expected size of its intersection with the vrn is
~Fl(l - y)k-hm. Since 7 has h hits, there are h possible positions at which such inflows
into type 7 can occur (i.e., there are h possible feeder types T’), for a total of
&J+l(l - y)k-hm. Now some of the progressions of type 7 can move out of this type.
For each i that corresponds to a miss of 7, this will happen whenever the set S(i, T, x, r)
is intersected by the Trn. We easily compute the size of the outflow to be
(K - h) Wh(l - #-h-i m. In the above we have ignored the possibility that a transition
between two types can occur with more than one of the points of a progression being hit
by the qm. Any flows arising out of such transitions, however, will have an expected
magnitude of 0(P~2m) and since we take 7 to be very small, they can be ignored. To
total up, when the new Trn points have been added, the expected number of arithmetic
progressions of type 7 coming to x will be

p(1 - y)k--hm + hqyh-l(l - y)l-&rn - (k - h) r]F(l - y)&“-lm

which is (y + y)“(l - y - T)k-am if again we ignore O(k2T2m) terms.
Thus ~(7, y) = (y + ~)~(l - y - #+a on the average, as we had hoped. By iterating

this heuristic argument we see how we can grow from ,Bm to am elements while having the
expected number of arithmetic progressions of any type at each point at each step.

A natural question at this point is: Why did we not use this method to carry out the
proof of the results in Section 2 ? The reason is that the above argument needs a “good”

DOUBLE HASHING 259

configuration already in the table to get started. The law of large numbers cannot be used
to show that the various set intersections will be nearly what we expect, unless the sets
involved are large enough. In the next section we will show how to carry out the above
argument rigorously. A special trick that uses the results of Section 2 will allow the above
process to get started.

For the remainder of the current section we confine ourselves to some definitions and
general remarks. We shall use the term the extensionprocess for this process of building up
the table we are describing. This process consists of steps of adding urn points at a time.
During each step, given any two types of progressions coming to a point x, there may be
transitions of actual progressions from one type to the other. These intertype transitions
will be calledflows. For each type we will have a certain in.ow and outflow of progressions
from it. Naturally we cannot assume that a type wili have exactly the expected number of
progressions, as we have done in the heuristic argument above. We introduce relative
errors 6,,, on this expected value that describe the deviation we are willing to allow. In
other words, when we are at load factor y, we assume that for each point x and each type 7
of length K (k not exceeding a certain maximum) and h hits, we will have

arithmetic progressions of type ~coming to x. Here we have already adopted theconvention
that we will follow in the actual argument and suppressed the dependency of O,,, on
anything but the length K of 7. We will find that the errors O,,, grow faster for larger k,
but if we compute the total number of arithmetic progressions coming to x of types
consisting entirely of hits, then the relative error on this total we will be able to make as
small as we please. Now double hashing chooses each of the empty points with proba-
bility proportional to the number of arithmetic progressions coming from the occupied
points to that point. The above remark then implies that during the current step every
empty position is nearly equally likely to be filled. So we are not too far from the random
situation. But how can we be sure that we will maintain the same good situation during
the next step ? Here we invoke Theorem 2.1.1 to assure that all intersections between the
Trn points and the various sets S(i, 7, x, r) of Definition 3.2.1 are nearly the same size.
In doing this we exclude an exponentially small fraction of choices of the vrn points, while
increasing the relative errors O,,, to 6,,+,,, for the next step. We will speak of using
Theorem 2.2.1 for controlling the intmsections, and therefore the flows. In order to keep
the error propagation equations for O,,, relatively clean, we will allow certain absolute
errors as well (the “residual” progressions of the next section). During any step, if there
is a number of progressions flowing between two types that is allowed by our control but
cannot be accounted for in the relative errors we allow, this number we will speak of as
an excessive flow. The gist of the argument then is that by excluding an exponentially
small fraction of possibilities, we maintain at each step every empty position nearly
equally likely to be filled. We never give clustering a chance to build up a really bad
configuration.

We now make a number of remarks that the reader should keep in mind while reading
the next section.

260 GUIBAS AND SZBMEBBDI

Remark 1. The types that ultimately play a role in double hashing are those con-
sisting entirely of hits. Because, however, the population of types changes by intertype
flows, we have to attempt to control all types at once.

Remark 2. Suppose we wish to maximize the number of progressions in a type 7
consisting of k hits. During each step the significant inflows into r are those from types
with k - 1 hits. Obviously we should maximize these inflows. Now these inflows are also
outflows from the “feeder” types one step below in the lattice. In order to maximize those
same inflows during the next step, we want to maximize the growth of the feeder types
during the current step. But these types have their outflows already chosen, so the best
we can do is to maximize the inflows into them. An inductive extension of this argument
shows that all flows in the lattice should take their maximum allowed value during
every step, if we are interested in maximizing the growth at the apex of the lattice. Similarly
if we wish to minimize this growth, all flows should be minimized. The point made here is
important and somewhat subtle, and the reader should dwell on it for a moment. Another
way to see the point is this. Consider one of the sets S corresponding to one of the feeder
types. At the current step a fraction pr of S will flow, where pi is allowed to vary within
certain limits. At the next step a fraction ps of the part of S that is left will flow, and so on,
say up to py . Then it is simple to see that the total fraction of S that has flowed is

1 - ir (1 - Pi>
i=l

and this expression is maximized when all of the pi are maximized. The intuitive inter-
pretation of this is that if we wish to maximize the total flow between two types, we should
never trade the certainty of a specific transition in the current step for the probability
of that same transition in some future step.

Remark 3. If we are interested in maximizing the flows, it will only hurt our upper
bound to make any of the sets S of Definition 3.2.1 that partake in the controlled inter-
sections larger than it really is.

Remark 4. Since we are dealing with nonnegative quantities, a relative error smaller
than -1 clearly does not make sense. We do, however, allow such fictitiously large
negative errors in the argument of the next section, since they can only make our lower
bounds worse and they avoid consideration of special cases.

Remark 5. If P(m) denotes any polynomial in m, C, 6, , 6, constants with C > 0,
6, > 6, > 0, then m sufficiently large

P(m) exp(- Cm”z) < exp(- Cm’,).

Remark 6. Let 0 denote an arbitrarily small positive number and let #(m) be a
quantity which is o(l) as m + co. Then we will say that z+% can be incorporated in B
to mean that, given any positive constant 8’, for m sufficiently large we can assume that
the sum 0 + $(m) does not exceed 8’. We use this terminology on a number of occasions.

DOUBLE HASHING 261

This is justified because it will be trivial to cheek that the sum of the #(m) over all instances
of the terminology that refer to the same 0 is o(1).

Remark 7. We will make some use of the 0, o notations. They always refer to m -+ 00,
and the implied constants are either absolute or depend at most on 01, which is a constant
of the entire problem. In Corollary 3.3.1 we also use the notations <, M with their usual
heuristic meaning. If the reader wishes to have an exact meaning, then he may take, in
the context where these occur, f w g to mean gm-6 < f < gms, and f < g to mean
f < gm-“, for some small positive 6.

Remark 8. The reader should realize that the process of inter-type flows we have
described is only a model for what occurs in the real table. The model will be used to
bound the number of progressions we can actually have in the table. It need not be the
case that the flows we use in the estimations of the next section can be realized by some
sequence of insertions into the actual table.

3.3. The Propagation of Errors and the Impotence of Clustering

We will now carry out a precise estimation of the error propagation in the extension
process. We assume 01, /3 are fixed constants, ,3 small, 0 < /3 < a: < 1. In the course of
the computation we will find that we have to restrict a to be below some absolute constant
a,,, a0 < 1. We take

rl = m-1f4-81,

and define

k, = [(3/4 - S,)/log(l/p)] log m (so /3”Brn = m1’4+6*),

k, = [(l/2 + S,)/log(l/ol)] log m (so o1’arn = rn”‘-‘3) (9

where S 0 , 6, , 6, , 6, , 6, are small positive constants such that

6, > 6,) 6, - 6, > 64 > 6, > 0 (6, , 6, will be used later). (ii)

Our choice for 7 is a compromise between two conflicting requirements. On the one hand
we want to make 7 as large as possible so as to get the maximum benefit from the law of
large numbers and Theorem 2.2.1. On the other hand we want to take r] sufficiently small
so that we can ignore the iteractions of the Trn points among themselves. During the
extension we need to maintain control over arithmetic progressions of length k, since the
argument of Section 3.1 depends heavily on our ability to push the number of arithmetic
progressions of length k, below some power less than mlP. Unfortunately in the early
stages of the extension process we are then out of luck. For types T of length k, and
many hits, the expected number of progressions of that type coming to a point will be too
small to either assert anything initially, or to control the inter-type flows by bounding
the size of the intersections with the Trn points. To circumvent this shortcoming we
introduce a technical device. For each point x and for each type 7 of length between k,
and k, we introduce an initial maximum positive “error” of size E,, = m1f4+% in the

571/16/2-IO

262 GUIBAS AND SZEMEBBDI

number of arithmetic progressions of type 7 coming to x. This error is in addition to the
regular relative errors discussed in Section 3.2. As we will see, it provides us with a way
of masking out the fact that we cannot control the size of the relative errors during the
early stages of the extension process. These additional progressions will of course flow
among the types like the normal ones we have already considered. We will call them the
residual progressions and will control their flows independently of the regular progres-
sions.

We will ignore the outflow of residual progressions from any given type. Thus their
number can only grow and will never become less than E,, . By analogy with Definition
3.2.1 we introduce the notations R(i, T, x, F), p(r, x, r) to denote the corresponding
quantities for the residual progressions. Thus p(~, X, r) > m-V4+*r. If at any moment
during the extension process we have

U(T, x, q < P(7, x, Q

then we will not attempt to control the intersection of any of S(i, r, x, r) with the Trn.
Instead we will control only S’(i, 7, x, r) U R(i, T, x, r), which has cardinality (a(~, x, r) +
p(r, X, r))m. We also use the notation

y(7, x, q = I R(i, 7, x, F)l.

If the intersection of the vrn with S(i, T, x, r) was excessively large, then any excess we
will relabel as residual progressions for the receiving type. Thus we can guarantee that
none of the regular flows (i.e., flows of regular progressions) will be excessive, by allowing
sometimes the residual flows to be excessively large (by at most the same relative error).
The quantitative argument will be given in the proof of Theorem 3.3.1. Figure 3.3.1
attempts to summarize this camouflaging with the residual progressions.

Case. 1: R > S S n H within bounds Case 2: R > S S n H out of bounds

FIG. 3.3.1. Camouflaging with the residual progressions.

DOUBLE HASHING 263

DEFINITION 3.3.1. The generic variable p,, will stand for any of p(T, X, r), the densities
of the residual progressions.

As we saw in the last section, it is our goal to perform the extension process so that at
each step all empty points are nearly equally likely to be filled. Since at each step we
introduce not one but qrn points all at once, we have to understand the interactions among
the qrn points themselves. It is possible that an initial fragment of the qrn points will be
placed so badly that it will greatly affect where the remaining of the Trn points will go.
This, however, can only occur if during an insertion one of the vrn points interacts
heavily with those previously inserted.

DEFINITION 3.3.2. Suppose we have a configuration r of ym occupied positions and
are inserting Trn additional points. An insertion of one of these points will be called bad
if its probe path (i.e., the sequence of examined points before insertion)

(1) contains an initial segment of length at least K, consisting of positions of the ym
and at most one position occupied by one of the r)m points, or

(2) contains (at least) two of the Trn points among its first K, (or fewer) steps.

An insertion which is not bad will be called good. We let b, denote the total number of
bad insertions that have occurred when we reach a load factor of y.

Figure 3.3.2 illustrates the different cases of good and bad insertions.
What we will prove below is that the conditional probabilities that any two empty

positions will be filled, given that they are filled with good insertions, are nearly equal.

Probe Path

Bad insertions
>'(a

(1) =_
v

vm

_<k,
(2) n

- - - - -

vm t 2 vm __________--__-- - - - - - - - - - - - - - - - -

Good insertions

FIG. 3.3.2. The good and bad insertions.

264 GUIBAS AN’D SZEMEREDI

We introduce the quantity xv to capture the relative error in the probabilities (recall
4J = 0).

DEFINITION 3.3.3. We let

xv = 1 yke%k -
k=2

We now have all the concepts we need to begin the quantitative argument.

THEOREM 3.3.1. Let 01, /I be positive constants such that 0 < j3 < 01 < 01~ . There exist
absolute positive constants s, D such that, given an arbitrarily small positive constant 8, there
exist positive constants is , Ce (tending to 0 as 0 + 0) such that: if we begin the extension
process with a conjguration of j?rn elements placed so that for each point x and type r of length
less than or equal to $ we have the expected number of arithmetic progressions of that type
coming to x within a relative error of ie and (for those r of length at least ke) a residual error
of at most E,, = m1f4+% progressions, then, except with probability exp(-Gem%) where So is
a constant, 0 < 6, < 6, - 6, 6, , S2 as de$ned by 7, k, in (i), when we reach a loadfactor y
we will have

(a) O,,, < (1 + iO) e5e(ys/s) - 1 for 2 < k < $,

(b) xv d w7
(c) p,,m < E,m(1/2+s8 og[l+2l0g~l/~l-v~~]/lo~~l/a~

,

(d) b,, < DYm1/2-s, with 6, 0 < 6 < 6, , 28, , a constant,

where 4 , k xv , pv , 4 are as given by Definitions 3.2.2, 3.3.3, 3.3.1, and 3.3.2, respectively.

Proof. We will prove assertions (a), (b), (c), and (d) by induction on the number of steps
in the extension process. Thus we will assume that they hold for y and prove them for
y + 7. For y = /3 all assertions are true trivially, except for (b) which requires that we
take i, < C$@(l - /I), as we certainly can. We will see how to choose the constants D,
s in the course of the proof.

The proof is in two parts. First we examine the effect of the bad insertions, and second
we look at the propagation of the errors.

What is the probability of a bad insertion ? Let us go back to Definition 3.3.2. An
initial segment of length at least k, will be entirely within the ?mz with probability
a(~,, , y), where 7O is the type of k, hits. Similarly, the probability of encountering one
of the vrn points in this segment is certainly bounded by k,&TI , y), where 7r denotes any
type of length ka and k, - 1 hits. Thus the probability of condition (1) of the definition
being satisfied does not exceed

~““(1 + ev,k,) + fLrke-l(i - d(i -t- %k,h (iii)

We estimate the probability that condition (2) will be satisfied somewhat differently. We
ask how many pairs (h(k), g(k)) are there that lead to a prove path satisfying (2). The
probe path is completely specified once we know the two vm’ points involved, and the

DOUBLE HASHING 265

positions of the two points on the path, say they are the bth and cth points, respectively.
Since we can take 1 < II < c < k, we have at most +kk,%12m2 distinct probe paths. Each
candidate pair (k(k), g(k)) d e fi nes a distinct path. Since each pair occurs with probability
l/m(m - l), we have an overall probability (per insertion) of satisfying (2) that is bounded
by ka2T2.

From assertion (a) we have

6 y,k, < (1 + ie) e5e(v”s)k, - 1

and since

it follows that

k, = W/2 + 6,) 1% ml/Peg W

0 v,k, < (1 + $) m58(r’ls ~~~1/2~+~,l/~logl/a~1

which can be made < ma6 by taking 0 sufficiently small, where 6, is such that 0 < 6, <
8, - 6, 28, - 6. Thus the quantity specified in (iii) is less than or equal to m-1/2-66 for
some 6, > 6, and so is k,2+ as the reader can easily check. The residual progressions of
the types accounted for in (iii) have to be added in also, of course, but their number as
given by (c) is less than or equal to

m1/4+6,m(1/2+6,)logt1+310g(ll(l-v))l/logh/d

m

which is less than m-1/2--66 for y < OL < 01s as can be easily checked. We will encounter
this 01~ later also, so we will not dwell on its value any longer here. Thus we have proved

Claim 1. The probability of a bad insertion is never greater than m-1/2--6 for j3 < y <
01 < 010.

By Theorem 2.2.1 (or its equivalent for Bernoulli trials) the probability that we will
have more than Dm-1f2-6Tm = DTm112-6 bad insertions, for some constant D slightly
larger than 1, is less than exp(-C(D - 1)2qm1/2-8) < exp(-m11s-28-81) and thus this
event can be excluded. Therefore we can assert that at load factor y + 7 the total of bad
insertions will not exceed

D(Y + rl)mllsa,

as we desire in order to prove (d). Although we cannot say anything about where the
badly inserted points will go, their number is so small that, as we shall see, they cannot
destroy the final assertion of regularity of our configuration.

We next show that any two empty positions have nearly equal probabilities of being
filled with good insertions. Under double hashing the probability that a given empty
position will be filled is proportional to the number of arithmetic progressions coming
to that position from the occupied positions. Recall also that in a good insertion, the probe
path is at most k, long and in this path at most one of the new qrn points can occur.
Let x be any empty point. The number of regular (i.e., nonresidual) arithmetic progres-

266 GUIBAS AND SZEMEREDI

sions of length K, 0 < k < k, , coming to x from the occupied points is by assumption
~“(1 f Bv,Jm, for a total of

5 r”(l It 44c) m,
k=O

or the discrepancy over the expected value is in absolute value at most

m = Xym.

Each of the new urn points can occur in the path, and each such point can introduce at
most k additional progressions of length k coming to x (by being the lst, 2nd,..., Kth point
of the progression), for a total of

Trn c k < k,%lm.
k=O

(iv>

The number of residual progressions coming to x is at most

for 01 < a0 . Finally the previously badly inserted points can introduce each at most k
progressions of length k, for a total as in (iv) of at most

b, 2 k < k,2Dym112-”
k=O

b-9

progressions. We only demand in (b) that x,, can be made as small as any prescribed
constant, and so the combined effect of (iv), (v , and (vi) can be accounted for by asserting)
that the deviation of the number of the arithmetic progressions coming to x from the
expected value does not exceed 2xYm. Thus we have proved

Claim 2. The probability that at a certain moment any specified empty point will be
filled with a good insertion during the y to y + 7 step is ((1 & 2x7)/(1 - y))m, indepen-
dently of where any previously inserted elements among the Trn were located.

(We have written 2x, instead of 2(1 - y) xv so as to incorporate the error that the
(1 - y) in the denominator can really vary between (1 - y) and (1 - y - ?I).) The
unavoidable bad insertions and the above small deviation from randomness is the way
that clustering manifests itself in this argument. When we insert the new qm points, the
probability that an empty position will be filled is

17 * = 77(1 f 2XYMl -Y)* (vii)

This ignores the effect of the bad insertions, but their contribution can easily be incor-
porated in the overgenerous factor of 2 introduced above, since their number is O(ml/s-a)
which is much less than r]m = m3/P-%.

DOUBLE HASHING 267

We are now ready to begin excluding those choices of the qrn points that would cause
any of the intertype lattice flows to be excessively different from the expected value. We do
this simultaneously for the lattices corresponding to all k, 2 < K < k, (k = 0, 1 cannot
vary from the average) and all points X. We control the flows by allowing a maximum
relative error of B,, for the intersections of our r]m points with each of the sets S(i, 7, X, r)
of Definition 3.2.1, where I’ denotes our current configuration of ym occupied positions.
By Theorem 2.2.1 we can do this while excluding only an exponentially small fraction
of the choices of the Trn points as long as the expected size of the intersection is not too
small. At the beginning of this section we introduced the residual progressions as a device
for handling the small S(i, 7, x, r). For each i, T, and x we demand that the intersections
of both S(i, Q-, x, I’) and R(i, T, X, P) with the qrn are within (1 f 0,) of what we expect
if / S(i, 7, X, r)l > 1 R(i, T, X, I’)l, otherwise we only demand this of the (disjoint) union
S(i, T, X, P) u R(i, 7, X, r). In the latter case the intersection will have up to (a(~, X, r) +
p(~, X, r)) q*(l + 6,)m points. By relabeling some regular progressions as residual we
can then still claim that the flow corresponding to the intersection of S(i, T, X, r) with the
v is rl*a(~, x, r)(l + e,)m, p rovided we allow the flow corresponding to R(i, 7, x, r) to
get as large as p(T, X, r) ?*(I + B,,)m. Furthermore now no set whose intersection with
the m we desire to control has cardinality less than E,, = m1/4+sz. Theorem 2.2.1 then
implies

Claim 3. During the step from load factor y to load factor y + 7, if we exclude a
fraction of choices of the r)m points that does not exceed exp(-C,mQ) (for 6, as in (ii)),
then we can assume that the intersection of the qrn points with each of S(i, 7, X, P)
(T a type of length at most k,J will have cardinality U(T, X, r) v*(l f Qm, and the
intersection of the r]rn with each of R(i, 7, x, r) will not be larger than ~(7, X, I’)v*(1+6@z.

We now compute the relative error f?,,,,, in terms of e,,, . Let T, the type we are now
considering, have length k and 1 hits. We saw in Section 3.2 that in order to maximize
the relative error for the type of k hits, we may assume that all intertype flows are maximal.
As we will see momentarily, we can ignore any flows caused by progressions hit by more
than one of the Trn points, Thus the maximal number of progressions of type 7 we can
have at any point when we reach load factor (y + 7) is

cryi - y)yi + e,,,) + ~yz-l(l - ~)~-z+l(l + e,,,) 7*(1 + 0,)
f 7 - (k - 4 yv - ~)v + e,,,) 77*u +

already inflow \ \
there outflow ‘I+” since all

flows are maximal

Figure 3.3.3 illustrates the inflow and outflow of progressions from a type.

X0 l

hit -a e hit
hit

c-

Qlm

type is (1 0 0 1 1 0)

FIG. 3.3.3. The inflow and outflow of progressions from a type.

268 GUIBAS AND SZEMEREDI

Ignoring the factor of m we can write the above expression as

YV - Y)“-z(l + %Jc) + Zr”-‘(1 - Y) k-z+l(l + 4.m 4 4J 7(1 + 2xJl(l - Y)

- (A - 4 YZU - r>“-“(1 + 4JN + 4) 7(1 + 2xvMl - Y)-

This has to equal (y + q)“(l - y - #+“(l + BY+,& and so we get

Now

- [(A - 4 74 - Y)I(~ + kd(l + 2x+,)(1 + 44.

-- --~:k.-ti”l-~- = 1 _ Z71y + (A
(Y + dZ (1 - Y - 7YZ - 4 7/u - Y) + %12)*

If we ignore the q2 terms, then we can rewrite the above as

The effect of the r12 terms can be incorporated in the constants 8, or xv , and so these
terms can be justifiably ignored. We maximize the error &,+n,k by taking Z = K above, so
our final error propagation equation becomes

e y+n.k = eysk + (74”/)(4 + 2~~ + 24x,) 4,, + (7wvo + 2~~ + 2~ox~). (ix)

Now we have x,, < sL>,” and we take 0, < Oy8, where s is a constant to be chosen below.
For 8 sufficiently small we will have 6, < 1 and so we can make the errors t$+,,k only
larger by writing

e v+n.k = 5w-w + ck) + 4,, . (x)

Going back through the above derivation and changing the signs of 8,,+,,k , t9,,, , 0, , and
xv gives us the error propagation equation for the negative errors. (Now we want all flows
to be minimal.) We get the equivalent of (viii) for the absolute value of the error:

e y+s.k = 4,, - wym + 2~~ - 24x,) kk

+ whw4 + 2~~ - 24~~)

+ b?P - 4/(1 - YM4 + 2x7 - %lxJ 42-c

- C7@ - 4/(1 - Yll(4 + 2x, - XJx%J*

DOUBLE HASHING 269

Since y < 01s which we can take less than Q, we have y < 1 - y, and so we can conclude
that (ix) is valid for the absolute value of the negative errors as well. Thus equation (x)
is justified for the absolute value of both positive and negative errors.

We still have to estimate the size of the flows that involve more than one of the Trn
points. Let us look at an arithmetic progression of length K coming to x that changes type
by receiving two of the qrn points. Suppose these two points occupy positions i and j
of the progression, respectively, 1 < i < j < K. Let us fix the two types involved, which
fixes i and j, and then ask how many progressions can flow between these two types. If the
donating type is 7, then at most one such progression can flow for each pair (a, b) of the
vrn points with the property that a E S(i, 7, x, I’) and a and b are in a distance ratio i : j
from x. If we allow the -qrn points to range over all m points, not just the remaining
(1 - y)m ones, we can only increase the flow in question. But now we are exactly in the
situation covered by Theorem 2.4.4 and thus we can assert that our flow, except with
exponentially small probability, will be O(y 1 S(i, 7, X, r)] m-“). Summing over all
possible choices of i and j we still get a total possible inflow into the receiving type of
O(k,2yZ-y 1 - y)“-z+27 ml-a) only, where 1 denotes the number of hits of the receiving
type 7’. A trivial extension of the above argument shows that any flows into T’ arising from
types with 3 (or 4, etc.) fewer hits will not be any greater. Thus the total magnitude of
these flows combined will be o(yz(l - y)k-zvm) and can therefore be incorporated into
the relative errors permitted in Eq. (ix). Our derivation of Eq. (x) by ignoring type
transitions which involve more than one of the Trn points has been justified.

We are finally at the point where we can push assertion (a) of our theorem through the
induction step. We would like to prove

and since 0 can be taken arbitrarily small, this is

(1 + i@) es8(Y”s)K(1 + 5ey%7 + O(k$)) - 1

= (1 + 4 k)(i + 5ey+lb + o(w)) - 1

= ey,k + 5eys-1k7](i + ey.k) + (l + e%k) oh2h

again the O(bs) term is negligible compared to the 50y+%7 terms, and can be incorporated
in the constant 6. Thus we need

8 yfn.k = 4,, + 5w-1~1 + ckh

which is exactly what we have proved in (x).
Next we prove (b) and determine the constants. It will be simpler to let the sum

xv = i2 e%kyk

270 GUIBAS AND SZEMEREDI

go to infinity, which we are allowed to do, since this can only increase the bound for x,, . So

then substituting e,,k from (a) and letting

eA=e , 5e(Yals)

we get

xv < (1 + 4 y2gAl(l - yeA) - r”/U - Y)

= &~2e2A/(l - ye”) + (eA - 1) ~“(1 + f? - #)I(1 - y)(l - r&).

For small 6 we have eA N 1, eA - 1 N 58(ys/s), and so if we take s so large that

(5/s)(2a2/(1 - a)“) < $,
and & so small that

i, < ((1 - 424 /3”e
then we will have

xv G 54

as desired. Note that s is independent of 0 and y.
The last object of interest is the residual sets. How fast can they grow I Let rGk*‘)

denote p(~, r)m for 7 a type of length K and 1 hits. The change in the r,‘s as we go from
y toy + r] load factor can be computed in a manner analogous to the above. The maximum
flow into T during the current step will be

zr(kJ-l)l)(i + e)(i + 2xv)/(1 - r) f 2zr,(L+1$/(1 - y). Y

We are not counting the outflows, so we obtain the recurrence relation

#k.Z) = r(k,Z)
YfV y + 214+$/(1 - y), 0 < I < K (rg(k*z) = Es).

(Here we see that types with more hits will grow faster than types with fewer, since they
have more types feeding into them. The same, of course, was true in our computation
of the relative errors, but there we decided to ignore this improvement. Because the
residual sets cause the argument to fail for large (Y, we want to do a better job of estimating
their growth.) Since all initial values are identical, it is clear from (xi) that r$9ka) is the
maximally growing type. In what follows therefore we restrict ourselves to estimating
its growth. Again, since 77 is infinitesimal compared to I or r,, , we can easily check that
the solution to the above difference equations (which we can think of as the system of
differential equations

is of the form

Thus

and so

DOUBLE HASHING

r(k*z) = E,(l + 2 log(l/(l - y)) - 2 log(l/(l - B)))” Y

< -%(l + 2 l%(l/(l - Y)N'*

rkvkm) < ~,[l + 2 log(I/(1 _ y))]('/2+~,)10g~/10g(l~a)
v

- Eom
~ll2+s,~logrl+2log~lI(1-v~~l/log~l/~~

,

271

as (c) of Theorem 3.3.1 requires.
There are at most 1 /r] = m1/4+8l steps, at most m points X, at most C2(k(k 2”a < 2%+l=

2m(1/2+6,)10g2/10g(1/~) distinct types, and at most K, values for i in the conttxt S(i, 7, X, r).
Thus the total number of excluded cases is a polynomial in m, and no case has probability
higher than exp(-Cem84). Thus as m gets large the total of the probabilities of the excluded
cases is less than exp(-Cemso), where 6, is as constrained in (ii).

This completes our proof of Theorem 3.3.1. m

COROLLARY 3.3.1. Given 0 < p < 01 < 01~ < 1, for any small positive constant e,
there exists an initial con.guration of pm occupied points, such that zf we add (a - /3)m
additional points using the double hashing process, then except with probability exp(- COrnso),
we will arrive at a configuration of o1rn occupied positions such that for each point x and for
each length k, 2 < k < k,‘, the number of arithmetic progressions coming to x of length k
from the occupied points will be a”(1 f o,,k). Here the t& are relative errors satisfying

and

(b) akd(l f da,k,‘) m < m1’2-8’,

for some positive constants 6, , 6’. (Notice that we have excluded any references to bad
insertions or residual progressions.)

Proof. This is a direct consequence of Theorem 3.3.1, except for a few items that we
need to check. First is the existence of a good initial configuration, the “seed” of the
extension process. We have to choose a configuration of j3m points so that for each point
x and each type 7 of length k and 1 hits we have

pz(l - /3)“lm(l & i,)

progressions of type 7 coming to x, with ie , k, 1 restricted as in the theorem. :,Now if
/3”(1 - ,3)k--sm > ml/d, then by Theorem 2.4.2, all configurations except for a fraction
not exceeding exp(-Cis2m1/5) of them will satisfy the above condition. If /3”(1 - fl)“-lrn <

272 GUIBAS AND SZEMEBEDI

m1j4, then let 7r denote a shorter type which is an initial segment of 7, of length k, and lr
hits, such that pzl(l - /3)k~-z m. M m1i4. Then we can apply Corollary 2.4.2 to 7r and
claim it has at most O(m1j4) progressions. Clearly 7 cannot have more progressions than
~-r , so therefore the excess of progressions T can have is at most O(ml/*). Any such
excessive progressions we label as residual for out type G-. This is consistent with the
assumptions of Theorem 3.3.1 that allow initial residual errors as large as m1/4+Sz per
type. Therefore all configurations of the pm points except for an exponentially small
fraction of them satisfy the initial conditions of Theorem 3.3.1. We start the extension
process by choosing one of them. This is an interesting “nonconstructive” aspect of our
proof. We do not know how to find a specific such good configuration, though we have
just proved that almost all configurations are good.

We now perform the extension process till we reach the load factor 01, as described in
Theorem 3.3.1. The number of points inserted with bad insertions is O(m1/2-6). For each
point x and each length k, no bad point can introduce (influence) more than K progressions
of length k coming to X. Thus the bad points can introduce at most O(Km1/2-6) progres-
sions of length k coming to X, k < k, = O(log m). The number of residual progressions
of length k coming to x is at most

~,m~1/2+S3~logr1+210g~l/~l-a~~l/log~l/a~ = m 1/4+62+(1/2+6J logtl+2log~l/~l-a~~l/log~l/~~

The absolute constant 01s is chosen so that

l/4 + 62 + (l/2 + S,) log[l + 2 l%(l/(l - 4)l/l%(l/4 < l/2 - 6

for 01 < 01s . A rough numerical computation shows that

010 N 0.319.

Thus the contribution of the residual progressions at any length is at most O(m1/2-s). Let
now 6’, 6” be such that 0 < 8’ < 6” < 6, 6, . Let k,’ < k, be such that

&xfrn = ,112-f;

such a k,’ clearly exists since

We have

1 + eor,k,’
= (1 + ie) e6@(a*ls)k.z’

= (1 + ie) ,se~ar”/s~~1/2+8’~/loe~l/a~~

Recall that & -+ 0 as 0 -+ 0, and so by choosing 0 sufficiently small we can obtain

1 + em.k,’ < m8wf for 6” < 6” - 6’.

So we have
alea’m(l + Bor,k,*) < m1’2-8”+8’.

DOUBLE HASHING 273

We can add to this the contribution of the bad insertions and the residual progressions,
and since they both are O(tt21/2--6”), the grand total of progressions of length k,’ coming to
x is

a”G?z(l + flmsk,g < ??P6’.

This proves part (b) of the Corollary.
For part (a) we work analogously. We know that

The contributions of the bad insertions and the residual progressions estimated as above
are O(ml/z-s’) even when summed over all allowed lengths K. Thus these contributions
to (xii) can be incorporated in the constant 8. Since K,’ < K, , we have shown that the
true relative errors satisfy

as desired.
By Theorem 3.3.1 the probability of the excluded events is exp(-C,m%). This com-

pletes the argument. 1

Remark. It is worth pointing out the reason why we have carried out the computation
of the growth of the residual progressions separately from the regular ones. For the
regular progressions, the initial number of progressions of a type 7 of length k and I
hits is approximately flz(l - fl)“%. Thus for /3 small and a particular k we have most
regular progressions in types with few hits. The initial number of residual progressions,
however, is the same for all types, thus giving rise to a quantitatively different model.

Figure 3.3.4 is to be used for reference. It summarizes the various 6’s we have introduced
and the relations among them.

Definitions

7 = m-1/4-%
p#k?m = mW+%
c&n = ,v-8,

E. = ml14+%

Prb. of excluded events = e-c@“*o
Prb. of bad insertion = rn-llZ-*

Constraints

6, > 6, > 0
6, - 6, > 6, > 6, > 0
26,) 6, > 6, > 6 > 0
28, - 6, 6, - 6 > s, > 0
6,) s > S” > 6’ > 0

FIG. 3.3.4. The proliferation of deltas.

274 GUIBAS AND SZEMEREDI

ACKNOWLEDGMENTS

The results of this paper form part of the first author’s Ph.D. Dissertation at Stanford University
[8]. Both authors would like to acknowledge the encouragement of Professor D. E. Knuth throughout
this research. The germ of the “pull-back process” idea of Section 2.4 is due to Vasek Chvatal.
The first author would also like to thank the Fannie and John Hertz Foundation and the Xerox
Palo Alto Research Center for financial support during the period in which this research was
carried out. Mark R. Brown, Louis Trabb-Pardo, Janet R. Roberts, Edward M. McCreight, and
the anonymous referee offered valuable suggestions for improving the exposition of this paper.

REFERENCES

1. J. R. BELL AND C. H. KAMAN, The linear quotient hash code, Comm. ACM 13 (1970), 675-677.
2. R. P. BRENT, Reducing the retrieval time of scatter storage techniques, Comm. ACM 16 (1972),

105-109.
3. H. CHERNOFF, A measure of asymptotic efficiency for tests of hypotheses based on a sum of

observations, Ann. Math. Statist. 23 (1952), 493-509.
4. P. ERD& AND J. SPENCER, “Probabilistic Methods in Combinatorics,” Academic Press, New

York, 1974.
5. W. FELLER, “An Introduction to Probability Theory and Its Applications,” 3rd ed., Vol. 1,

Sect. 11.6, Wiley, New York, 1968.
6. L. J. GUIBAS, The analysis of hashing algorithms that exhibit k-ary clustering, in “Proceedings

of the 1976 FOCS Conference, Houston, Texas, October 1976.”
7. L. J. GUIBAS, “On the Distribution of Arithmetic Progressions of Length 3 in Random Samples

of the Integers 1,2,..., N,” Unpublished Manuscript, Stanford, Calif., February 1975.
8. L. J. GUIBAS, “The Analysis of Hashing Algorithms,” Computer Science Ph.D. Thesis at

Stanford Univ. June 1976 (also available as Xerox PARC CSL Report CSL-76-3).
9. G. H. HARDY AND E. M. WRIGHT, “An Introduction to the Theory of Numbers,” 4th ed.,

Chapts. III, X, Oxford, London/New York, 1968.
10. D. E. KNUTH, “The Art of Computer Programming,” Vol. 1, “Fundamental Algorithms,”

2nd ed., Sect. 6.4, Addison-Wesley, Reading, Mass., 1975.
11. D. E. KNUTH, “The Art of Computer Programming,” Vol. 3, “Sorting and Searching,”

Sect. 1.2, Addison-Wesley, Reading, Mass., 1973.
12. D. E. KNUTH, Mathematical analysis of algorithms, Inf. Process. Lett. (1972), 19-27.
13. A. RENYI, “Probability Theory,” Chap. VII, North-Holland, Amsterdam, 1970.
14. J. D. ULLMAN, A note on the efficiency of hash functions, J. Assoc. Cornput. Much. 19 (1972),

569-575.

