MULTIPLICATION GROUPS

Preliminaries involving permutation groups. Let G be a permutation group upon a set Ω . Fix an element $\omega \in \Omega$. The set of all $g \in G$ that fixes ω is said to be the *stabilizer* of G at ω . It is a subgroup and is denoted by G_{ω} .

Lemma 1. Suppose that $g \in G$ and $\alpha = g(\omega)$. Then $G_{\alpha} = gG_{\omega}g^{-1}$. If G is transitive, then $G_{\omega} \cap Z(G) = 1$.

Proof. Let h be an element of G. Then $h \in G_{\alpha} \Leftrightarrow h(\alpha) = \alpha \Leftrightarrow hg(\omega) = g(\omega) \Leftrightarrow g^{-1}hg(\omega) = \omega \Leftrightarrow g^{-1}hg \in G_{\omega} \Leftrightarrow h \in gG_{\omega}g^{-1}$. Suppose that G is transitive and that $h \in Z(G)$ fixes ω . Since G is transitive, for each $\alpha \in \Omega$ there exists $g \in G$ such that $g(\omega) = \alpha$. Since $h \in G_{\omega}$, $ghg^{-1} \in G_{\alpha}$. Therefore $h = ghg^{-1} \in G_{\alpha}$. Hence $h(\alpha) = \alpha$ for each $\alpha \in \Omega$. Thus $h = \mathrm{id}_{\Omega}$.

Recall that if S is a subset of a group G, then $N_G(S) = \{g \in G; gSg^{-1} = S\}$ is called the *normalizer* of S, and $C_G(S) = \{g \in G; gs = sg \text{ for all } s \in S\}$ the *centralizer* of S. Both $N_G(S)$ and $C_G(S)$ are subgroups of G. To prove that $H \leq G$ is a subgroup of $N_G(S)$ it suffices to verify that $hSh^{-1} \subseteq S$ for every $h \in H$. Indeed, $h^{-1}S(h^{-1})^{-1} \subseteq S$ is the same as $S \subseteq hSh^{-1}$. Similarly for centralizers.

Lemma 2. Let g be an element of G. Then $G_{g(\omega)} = G_{\omega}$ if and only if $g \in N_G(G_{\omega})$.

Proof. By Lemma 1, $G_{g(\omega)} = G_{\omega}$ if and only if $gG_{\omega}g^{-1} = G_{\omega}$, which is the same as $g \in N_G(G_{\omega})$.

Lemma 3. Let h and g be elements of G. Then $hG_{\omega} = gG_{\omega}$ if and only if $g(\omega) = h(\omega)$, while $G_{\omega}h = G_{\omega}g$ if and only if $g^{-1}(\omega) = h^{-1}(\omega)$.

Proof. Since $(G_{\omega}h)^{-1} = h^{-1}G_{\omega}$, only the first equality needs to be verified. Now, $hG_{\omega} = gG_{\omega} \Leftrightarrow h^{-1}g \in G_{\omega} \Leftrightarrow h^{-1}g(\omega) = \omega \Leftrightarrow g(\omega) = h(\omega)$.

A set $\Gamma \subseteq \Omega$ is said to be a *block* (of *G*) if it is nonempty and satisfies the implication

$$g(\gamma) \in \Gamma \Rightarrow g(\Gamma) \subseteq \Gamma$$

for all $g \in G$ and $\gamma \in \Gamma$.

Lemma 4. Let Γ be a block. If $g \in G$, then either $g(\Gamma) = \Gamma$ or $g(\Gamma) \cap \Gamma = \emptyset$. In any case, $g(\Gamma)$ is a block of G as well.

Proof. Suppose first that there exist $\beta, \gamma \in \Gamma$ such that $g(\gamma) = \beta$. Then $g(\Gamma) \subseteq \Gamma$ by the definition of a block. Since $g^{-1}(\beta) = \gamma$, $\gamma^{-1}(\Gamma) \subseteq \Gamma$ too. Hence $g(\Gamma) = \Gamma$. We have proved that this is true whenever $\gamma(\Gamma) \cap \Gamma \neq \emptyset$.

To prove that $g(\Gamma)$ is always a block, consider $\alpha \in g(\Gamma)$ and $h \in G$ such that $h(\alpha) = \beta \in g(\Gamma)$. Then $hg(g^{-1}(\alpha)) = g(g^{-1}(\beta))$, and thus $g^{-1}hg(g^{-1}(\alpha)) = g^{-1}(\beta)$. Both $g^{-1}(\alpha)$ and $g^{-1}(\beta)$ belong to Γ . Therefore $g^{-1}hg(\Gamma) = \Gamma$, which means $h(g(\Gamma)) = g(\Gamma)$. We have shown that $g(\Gamma)$ is a block.

Blocks Γ_1 and Γ_2 are said to be *conjugate* if there exists $g \in G$ such that $g(\Gamma_1) = \Gamma_2$. The relation 'to be conjugate' clearly is an equivalence upon the set of all blocks of G.

Corollary 5. Suppose that G is transitive. If Γ is a block of G, then the set of all $g(\Gamma)$, $g \in G$, partitions the set Ω . Furthermore, two blocks are conjugate if and only if they induce the same partition of Ω .

Proof. Indeed, the transitivity ensures that the sets $g(\Gamma)$ are blocks that cover all of Ω . Moreover, any two such blocks are conjugate. The rest follows from Lemma 4 in an immediate fashion.

An equivalence \sim of Ω is said to be *stable under* G if

 $\alpha \sim \beta \iff g(\alpha) \sim g(\beta)$ for each $\alpha, \beta \in \Omega$ and $g \in G$.

In fact it is enough to prove that the implication

 $\alpha \sim \beta \Rightarrow g(\alpha) \sim g(\beta)$ for each $\alpha, \beta \in \Omega$ and $g \in G$.

is satisfied, since then $g(\alpha) \sim g(\beta)$ implies $\alpha = g^{-1}g(\alpha) \sim g^{-1}g(\beta) = \beta$.

Lemma 6. Let \sim be a stable equivalence. If $\alpha \in \Omega$ and $g \in G$, then $[\alpha]_{\sim}$ and $[g(\alpha)]_{\sim}$ are conjugate blocks. If G is transitive, then the blocks of \sim form a partition of Ω by conjugate blocks. On the other hand, every such partition induces a stable equivalence.

Proof. By the definition of stable equivalence, $g([\alpha]_{\sim}) = [g(\alpha)]_{\sim}$, for every $\alpha \in \Omega$ and each $g \in G$. If $\Gamma = [\omega]_{\sim}$ and $g(\omega) \in \Gamma$, then $g(\Gamma) = \Gamma$. Hence each block of \sim is a block of G. The rest follows from Corollary 5.

Lemma 7. For $\alpha, \beta \in \Omega$ set $\alpha \sim \beta \Leftrightarrow G_{\alpha} = G_{\beta}$. The equivalence \sim is stable under G. Furthermore, suppose that G is transitive, that $\omega \in G$ and that $\Gamma = \{\alpha \in \Omega; G_{\omega} \subseteq G_{\alpha}\}$. If Γ is a block of G, then $\Gamma = [\omega]_{\sim}$.

Proof. If $G_{\alpha} = G_{\beta}$ and $g \in G$, then $G_{g(\alpha)} = G_{g(\beta)}$, by Lemma 1. Suppose now that G is transitive and that ω and Γ are as in the statement. Suppose that $\alpha \in \Gamma$ and let $g \in G$ be such that $g(\omega) = \alpha$. Then $G_{\omega} \subseteq gG_{\omega}g^{-1} = G_{\alpha}$, by Lemma 1 and the definition of Γ . Since $g(\Gamma) = \Gamma$ there is also $g^{-1}(\omega) \in \Gamma$, and so $G_{\omega} \subseteq g^{-1}G_{\omega}g$. Therefore $G_{\omega} = gG_{\omega}g^{-1} = G_{\alpha}$.

The following characterization of blocks is nearly self-evident. Note that it differs from the definition of a block by considering the defining property just for one element, i.e. the element ω .

Lemma 8. Suppose that Γ is a subset of the orbit $G(\omega)$ that contains ω . The following is equivalent:

- (1) Γ is a block;
- (2) the ensuing implication holds for all $g \in G$:

 $g(\omega) \in \Gamma \implies g(\Gamma) \subseteq \Gamma \text{ and } g^{-1}(\omega) \in \Gamma;$

(3) the ensuing implication holds for all $g \in G$:

$$g(\omega) \in \Gamma \Rightarrow g(\Gamma) = \Gamma.$$

Proof. Points (2) and (3) are equivalent since if (2) holds, then $g^{-1}(\omega) \in \Gamma$ implies $g^{-1}(\Gamma) \subseteq \Gamma$. If Γ is a block, then (3) holds, by Lemma 4. For the converse assume that $g(\gamma) \in \Gamma$ for some $\gamma \in \Gamma$ and $g \in G$. Since $\Gamma \subseteq G(\omega)$, there exists $h \in G$ such that $h(\omega) = \gamma$. This gives $h(\Gamma) = \Gamma$, $gh(\omega) \in \Gamma$ and $gh(\Gamma) = \Gamma$. Hence $g(\Gamma) = \Gamma$.

Lemma 9. Let $H \leq G$ be such that $G_{\omega} \leq H$. Then $\Gamma = H(\omega)$ (the orbit of ω under the action of H) is a block of G, and $H = \{g \in G; g(\omega) \in \Gamma\}$.

Proof. Let $g \in G$ be such that $g(\omega) \in H(\omega)$. Then $g(\omega) = h(\omega)$ for some $h \in H$. Therefore $h^{-1}g \in G_{\omega} \leq H$, and thus $g \in H$. Hence $g(H(\omega)) = (gH)(\omega) = H(\omega)$. That makes $H(\omega)$ a block. If $g(\omega) \in \Gamma$, $g \in G$, then there exists $h \in H$ such that $g(\omega) = h(\omega)$. Hence $h^{-1}g \in G_{\omega} \leq H$, and so $g = h(h^{-1}g) \in H$.

Lemma 10. Let $\Gamma \subseteq G(\omega)$ be a block of G such that $\omega \in \Gamma$. Put $H = \{h \in G; h(\omega) \in \Gamma\}$. Then H is a subgroup of G that contains G_{ω} , and $\Gamma = H(\omega)$.

Proof. Since Γ is a block within the orbit of ω , there has to be $H = \{h \in G; h(\Gamma) = \Gamma\}$, by Lemma 8. This implies that H is a subgroup of G and that $\Gamma = H(\omega)$. \Box

Note that $\{\omega\}$ is always a block of G and that the orbit $G(\omega)$ is also a block.

Lemmas 9 and 10 establish a 1-to-1 correspondence between blocks $\Gamma \subseteq G(\omega)$ that include ω , and subgroups of G that contain G_{ω} . The correspondence respects inclusions. Hence it yields an isomorphism between the lattice of blocks that are subsets of $G(\omega)$ and contain ω , and the interval $[G_{\omega}, G]$ in the lattice of all subgroups of G. If $G(\omega) \neq \{\omega\}$, then $G_{\omega} \neq G$. In such a case the interval $[G_{\omega}, G]$ contains only two elements (two subgroups) if and only if there exists no block that is a proper subset of $G(\omega)$ and contains at least two elements.

The permutation group G is said to be *primitive* if it is nontrivial and the only blocks of G are Ω and $\{\alpha\}, \alpha \in \Omega$. Since $G(\omega)$ is a block, a primitive group has to be transitive. In view of the correspondence described above, the following claim may be stated without a proof.

Lemma 11. A nontrivial transitive permutation group G is primitive if and only if G_{ω} is a maximal subgroup of G.

Lemma 12. If $H \leq G$ and Γ is an orbit of H, then Γ is a block.

Proof. Suppose that $\omega \in \Gamma$ and put $K = HG_{\omega}$. If $k \in K$, then there exists $h \in H$ such that $k(\omega) = h(\omega)$. Thus $\Gamma = K(\omega)$. The statement follows from Lemma 9. \Box

Lemma 13. Let ~ be the equivalence upon Ω given by $G_{\alpha} = G_{\beta}$. Assume that G is transitive and put $\Gamma = [\omega]_{\sim}$. Then Γ is a block of G, and $\{g \in G; g(\omega) \in \Gamma\} = N_G(G_{\omega})$.

Proof. The set Γ is a block by Lemmas 7 and 6. By Lemma 2, $\Gamma = N_G(G_\omega)(\omega)$. The rest follows from Lemma 9 since $N_G(G_\omega)$ contains G_ω .

Suppose that $U \leq V$ are groups and that $S \subseteq V$. Call S a *left transversal* to U in V if SU = V, $1 \in S$, and $s_1U = s_2U \Rightarrow s_1 = s_2$, whenever $s_1, s_2 \in S$. The *right transversal* is defined in a mirror way. A set that is both left and right transversal is known as a *two-sided transversal*, or just a *transversal*. The notion of transversal is sometimes defined without stipulating that the transversal contains the unit element 1.

The core of U in V is the greatest normal subgroup $N \trianglelefteq V$ that is contained in U. Note that $N = \bigcap_{g \in V} gUg^{-1}$.

Lemma 14. Let S be a subset of G that contains id_G . S is the left transversal to G_{ω} in G if and only if for each $\alpha \in G(\omega)$ there exists exactly one $s \in S$ such that $s(\omega) = \alpha$. Similarly, the set S is the right transversal to G_{ω} in G if and only if for each $\alpha \in G(\omega)$ there exists exactly one $s \in S$ such that $s(\alpha) = \omega$.

Proof. This follows from the description of cosets of G_{ω} , as given in Lemma 3.

Lemma 15. If G is transitive, then the core of G_{ω} is trivial.

Proof. By Lemma 1, the core of G_{ω} is equal to the intersection of all G_{α} , $\alpha \in \Omega$. Of course, the only permutation that fixes each $\alpha \in \Omega$ is the identity.

Proposition 16. Suppose that T is a left transversal to G_{ω} in G, and that $X \subseteq G$ generates G. For each $\alpha \in G(\omega)$ denote by t_{α} that element of T which sends ω upon α . Then

$$G_{\omega} = \langle t_{x(\alpha)}^{-1} x t_{\alpha}; \ \alpha \in G(\omega) \ and \ x \in X \rangle.$$

Proof. For $S \subseteq G$ set $S^{\pm 1} = \{s, s^{-1}; s \in S\}$. Each element of G may be thus expressed as $x_n \cdots x_1$, where $x_i \in X^{\pm 1}$, $1 \leq i \leq n$. Denote by Y the set of all

elements $t_{x(\alpha)}^{-1}xt_{\alpha}$, $\alpha \in G(\omega)$ and $x \in X$. If $\beta = x(\alpha)$, then the inverse of such an element is equal to $t_{x^{-1}(\beta)}^{-1}x^{-1}t_{\beta}$. Hence

$$Y^{\pm 1} = \{ t_{x(\alpha)}^{-1} x t_{\alpha}; \ \alpha \in G(\omega) \text{ and } x \in X^{\pm 1} \}.$$

Note that $Y^{\pm 1} \subseteq G_{\omega}$ and that $t_{\omega} = \mathrm{id}_{\Omega}$.

Suppose now that $g = x_n \cdots x_1 \in G_{\omega}$, where $x_1, \ldots, x_n \in X^{\pm 1}$. Put $\alpha_i = x_i \cdots x_1(\omega), \ 0 \le i < n$, and insert $t_{\alpha_i} t_{\alpha_i}^{-1} = t_{\alpha_i} t_{x_i(\alpha_{i-1})}^{-1}$ in between x_{i+1} and x_i , $1 \le i < n$. That makes

$$g = t_{\omega}gt_{\omega} = t_{\omega}^{-1}x_n \cdots x_1 t_{\omega} = \left(t_{x_n(\alpha_{n-1})}^{-1}x_n t_{\alpha_{n-1}}\right) \cdots \left(t_{x_1(\alpha_0)}^{-1}x_1 t_{\alpha_0}\right)$$

an element of $\langle Y \rangle$.

Quasigroup congruences. Let Q be a quasigroup. Set

$$LMlt(Q) = \langle L_x; \ x \in Q \rangle,$$

RMlt(Q) = $\langle R_x; \ x \in Q \rangle$ and
Mlt(Q) = $\langle L_x, R_x; \ x \in Q \rangle.$

Call these groups the *left multiplication group*, the *right multiplication group* and the *multiplication group* of Q, respectively.

Proposition 17. Let Q be a quasigroup. An equivalence \sim on Q is a congruence if and only if for all $x, y, z \in Q$

 $x \sim y \Rightarrow xz \sim yz, \ zx \sim zy, \ x/z \sim y/z \ and \ z \setminus x = z \setminus y.$

Proof. If * is a binary operation on Q, then \sim is compatible with * if and only if $x \sim y \Rightarrow x * z \sim y * z$ and $z * x \sim z * y$ holds for all $x, y, z \in Q$. To see that this is true consider $a, b, c, d \in Q$ such that $a \sim b$ and $c \sim d$. If the implication holds for all $x, y, z \in Q$, then $a * c \sim b * c \sim b * d$.

Due to this fact the proof may be restricted to verifying implications $x \sim y \Rightarrow z/x \sim z/y$ and $x \sim y \Rightarrow x \setminus z \sim y \setminus z$. It is enough to prove the latter implication because of mirror symmetry. Before doing so let us observe that all implications assumed may be considered as equivalences. E.g., we have $x \sim y \Leftrightarrow xz \sim yz$. To prove the converse direction suppose that $xz \sim yz$. By the assumptions of the statement $(xz)/z \sim (yz)/z$. However (xz)/z = x and (yz)/z = y. Similarly in the other cases.

Thus $x \setminus z \sim y \setminus z \Leftrightarrow z \sim x(y \setminus z) \Leftrightarrow z/(y \setminus z) \sim (x(y \setminus z))/(y \setminus z)$. Now, $z/(y \setminus z) = y$ and $x(y \setminus z))/(y \setminus z) = x$.

Theorem 18. Let Q be a quasigroup and let \sim be an equivalence upon Q. The equivalence \sim is a congruence of Q if and only if it is stable under Mlt(Q).

Proof. The equivalence \sim is stable under Mlt(Q) if $x \sim y$ implies $g(x) \sim g(y)$ for each $x, y \in Q$ and $g \in G$. For the implication to hold it suffices if it holds for generators of Mlt(Q) and the inverses of these generators. That follows from Proposition 17 since $R_z(x) = xz$, $L_z(x) = zx$, $R_z^{-1}(x) = x/z$ and $L_z^{-1}(x) = z \setminus x$. \Box

Corollary 19. Let S be a nonempty subset of a quasigroup Q. The set S is a block of a congruence if and only if it is a block of Mlt(Q). Each such block determines exactly one congruence of Q.

Proof. Indeed, blocks of a stable equivalence are blocks of the permutation group, and each block of a transitive group fully determines a stable equivalence. \Box

Corollary 20. Let Q be a quasigroup, |Q| > 1. The quasigroup is simple if and only if Mlt(Q) is a primitive permutation group.

Proof. Recall that a transitive group is said to be primitive if it possesses no nontrivial block (i.e., a block that differs from the underlying set and contains more than than one element.)

Inner mapping group. Let Q be a loop. The stabilizer $(Mlt Q)_1$ is known as the inner mapping group. It is denoted by $\operatorname{Inn}(Q)$. Thus $\varphi \in \operatorname{Inn}(Q)$ if and only if $\varphi(1) = 1$ and $\varphi \in Mlt(Q)$.

Theorem 21. Let Q be a loop. Then $\operatorname{Inn}(Q) = \langle L_{xy}^{-1}L_xL_y, R_{yx}^{-1}R_xR_y, R_x^{-1}L_x;$ $x, y \in Q \rangle.$

Proof. Use Proposition 16 with G = Mlt(Q), $X = \{L_y, R_y; y \in Q\}$ and $T = \{L_y; R_y; y \in Q\}$ $y \in Q$. Note that T is indeed a (left) transversal to Inn(Q) since $L_y(1) = y$ for every $y \in Q$, and $L_1 = \mathrm{id}_Q$.

By Proposition 16 the set of all $L_{xy}^{-1}L_xL_y$ and $L_{yx}^{-1}R_xL_y$ generate Inn(Q). Obviously, $R_x^{-1}L_x \in \text{Inn}(Q)$. The rest follows from $L_y = R_y(R_y^{-1}L_y)$ and $L_{yx}^{-1} = R_y(R_y^{-1}L_y)$ $(R_{ux}^{-1}L_{yx})^{-1}R_{ux}^{-1}$

Mappings $L_{xy}^{-1}L_xL_y$, $R_{yx}^{-1}R_xR_y$, $R_x^{-1}L_x$ are known as the standard generators of Inn(Q). There are many other mappings that belong to Inn(Q). For example $[L_x, R_y] = L_x^{-1} R_y^{-1} L_x R_y \in \operatorname{Inn}(Q)$ for all $x, y \in Q$.

Normal subloops. Let ~ be a congruence of a loop Q. If $x \sim 1$ and $y \sim 1$, then $xy \sim 1, x/y \sim 1$ and $x \setminus y \sim 1$ since $1 = 1 \cdot 1 = 1/1 = 1 \setminus 1$. The set $[\sim]_1$ is thus a subloop of Q.

A subloop of a loop Q is called *normal* if it is a block of a congruence. By Corollary 19 the normal subloop determines exactly one congruence of Q. Denote the congruence by \sim . Blocks of \sim are the blocks of Mlt(Q) conjugate to $N = [1]_{\sim}$. Hence they are equal to $L_x(N) = xN = Nx = R_x(N)$. A block xN = Nx is called a coset of N. The fact that N is a normal subloop of Q is denoted, like in groups, by $N \leq Q$.

Theorem 22. Let Q be a loop and let N be a subloop of Q. The following is equivalent:

(i) N is normal;

(ii) $\varphi(N) \subseteq N$ for each $\varphi \in \text{Inn}(Q)$;

(iii) $\varphi(N) = N$ for each $\varphi \in \text{Inn}(Q)$;

(iv) xN = Nx, x(yN) = (xy)N and (Ny)x = N(yx) for all $x, y \in Q$.

Proof. If N is a block of a congruence $\sim, x \in N$ and $\varphi \in \text{Inn}(Q)$, then $1 = \varphi(1) \sim \varphi(1)$ $\varphi(x)$. Hence (i) \Rightarrow (ii). If (ii) holds and $\varphi \in \text{Inn}(Q)$, then both $\varphi(N) \subseteq N$ and $\varphi^{-1}(N) \subseteq N$ are true. Thus $\varphi(N) = N$, and (ii) \Rightarrow (iii). The condition (iv) can be also expressed as $L_{xy}^{-1}L_xL_y(N) = N$, $R_{yx}^{-1}R_xR_y(N) = N$ and $R_x^{-1}L_x(N) = N$. In view of Theorem 21 this means that (iii) \Leftrightarrow (iv).

It remains to prove (iii) \Rightarrow (i). Each element of Mlt(Q) may be written as $L_x \varphi$. where $\varphi \in \text{Inn}(Q)$ and $x \in Q$. (This is because the set of all left translations forms a transversal to Inn(Q).) If $x \in N$, then $L_x \varphi(N) = xN = N$. If $x \notin N$, then $L_x \varphi(N) = xN$ and $xN \cap N = \emptyset$. This means that N is a block of Mlt(Q).

Centres. Recall that the *centre* of a loop Q is defined as the set of all $z \in Q$ such that $z \in N(Q) = N_{\lambda}(Q) \cap N_{\mu}(Q) \cap N_{\rho}(Q)$ and that zx = xz for all $x \in Q$.

The following facts are direct enough to be stated without a proof.

Lemma 23. Let a be an element of a loop Q. Then

- (1) $a \in N_{\lambda} \Leftrightarrow R_{yx}^{-1}R_{x}R_{y}(a) = a \text{ for all } x, y \in Q;$ (2) $a \in N_{\mu} \Leftrightarrow [L_{x}, R_{y}](a) = a \text{ for all } x, y \in Q;$ and

(3) $a \in N_{\rho} \Leftrightarrow L_{xy}^{-1}L_{x}L_{y}(a) = a \text{ for all } x, y \in Q;$

Theorem 24. Let Q be a loop. Then Z(Q) is a normal subloop of Q. An element $z \in Q$ belongs to Z(Q) if and only if $\varphi(z) = z$ for all $\varphi \in \text{Inn}(Q)$. Furthermore, $Z(\text{Mlt}(Q)) = \{L_z; z \in Z(Q)\} = \{R_z; z \in Z(Q)\}$ and $N_{\text{Mlt}(Q)}(\text{Inn}(Q)) = \text{Inn}(Q)Z(\text{Mlt}(Q))$.

Proof. If $a \in Z(Q)$, then a is fixed by every standard generator of Inn(Q), by Lemma 23 and Theorem 21. Thus each $\varphi \in \text{Inn}(Q)$ fixes every $a \in Z(Q)$. For the converse direction use Lemma 23 and observe again that $T_x(a) = a \Leftrightarrow ax = xa$.

Since N(Q) is a subloop of Q, the product ab belongs to N(Q) for all $a, b \in Z(Q)$. Therefore $L_{ab} = L_a L_b = R_a R_b = R_{ba} = R_{ab}$. Also, $L_{a^{-1}} = L_a^{-1} = R_a^{-1} = R_{a^{-1}}$. Hence Z(Q) is a subloop of Q. Since $\operatorname{Inn}(Q)$ fixes each element of $a \in Z(Q)$ it has to be a normal subloop, by Theorem 22. That makes Z(Q) a block of $\operatorname{Mlt}(Q)$. Elements $z \in Z(Q)$ have been characterized as those elements of Q that are fixed by each $\varphi \in \operatorname{Inn}(Q)$. In other words $z \in Z(Q) \Leftrightarrow \operatorname{Inn}(Q) \subseteq (\operatorname{Mlt}(Q))_z$. By Lemma 7, $z \in Z(Q) \Leftrightarrow \operatorname{Inn}(Q) = (\operatorname{Mlt}(Q))_z$.

If $z \in Z(Q)$, then $L_z = R_z$ and both $L_z R_x = R_x L_z$ and $R_z L_x = L_x R_z$ are clearly true for each $x \in Q$. Hence $L_z \in Z(\operatorname{Mlt}(Q))$. If $\psi \in Z(\operatorname{Mlt}(Q))$ and $\varphi \in \operatorname{Inn}(Q)$, then $\varphi(\psi(1)) = \psi(\varphi(1)) = \psi(1)$. Hence $\psi(1) = z \in Z(Q)$, and $L_z^{-1}\psi \in \operatorname{Inn}(Q)$. No nontrivial element of $\operatorname{Inn}(Q)$ may be central, say by Lemma 1. This verifies the description of $Z(\operatorname{Mlt}(Q))$ and shows that $\operatorname{Inn}(Q)Z(\operatorname{Mlt}(Q)) = \{\psi \in \operatorname{Mlt}(Q); \psi(1) \in Z(Q)\}$. The latter group is also equal to $N_{\operatorname{Mlt}(Q)}(\operatorname{Inn}(Q))$, by Lemma 13. \Box

Nilpotency. Let S be a set of subsets of a set X. Suppose that $X \in S$ and that S contains the least element, say I. Thus $I \subseteq X$ for each $X \in S$. In the application below X = Q, Q a loop, and I is the trivial subloop, i.e. $I = \{1\}$.

Suppose that upon S there are defined two transformations, say α and β . Let both of them *respect inclusions*, i.e., if $S_1, S_1 \in S$ and $S_1 \subseteq S_2$, then $\alpha(S_1) \subseteq \alpha(S_2)$ and $\beta(S_1) \subseteq \beta(S_2)$. Furthermore, let both of them be *monotonous*, with $\alpha(S) \supseteq S$ and $\beta(S) \subseteq S$, for every $S \in S$.

Finally, let α and β be interconnected by

 $\beta \alpha(S) \subseteq S$ and $\alpha \beta(S) \supseteq S$, for every $S \in S$.

In such a situation it is possible to build *lower series* $X \supseteq \beta(X) \supseteq \beta^2(X) \supseteq \ldots$, and *upper series* $I \subseteq \alpha(I) \subseteq \alpha^2(I) \subseteq \ldots$. It is well known that the lower series ends at I if and only if the upper series ends at X, and that, if the latter is true, then both series are of equal length. If the length is n + 1, then n is the *nilpotency class* of S (with respect to α and β) and S is said to be *nilpotent*. Of course, if Sis deterministically derived from an object \mathcal{O} , then the notions of nilpotency and nilpotency class are related to that object.

The objects in question now are loops, and the systems of subsets are the normal subloops of a loop Q. If $N \leq Q$, then there obviously exists a unique $M \leq Q$ such that $N \leq M$ and M/N = Z(Q/N). This is the operator α . The normal subloops $\alpha^i(1)$, $i \geq 0$, are the *iterated centers* $Z_i(Q)$, with $Z_1(Q) = Z(Q)$ and $Z_{i+1}(Q)/Z_i(Q) = Z(Q/Z_i(Q))$.

The inclusion $M = \alpha(N) \supseteq N$ follows from the fact that N/N is the trivial subgroup of Q/N. Hence $N/N \leq Z(Q/N)$. Suppose now that $N_1 \leq N_2$ are normal subloops of Q. Denote by π the homomorphism $Q/N_1 \to Q/N_2$, $xN_1 \mapsto xN_2$. If $M \leq Q$ is such that $N_1 \leq M$ and $M/N_1 \leq Z(Q/N_1)$, then $\pi(M/N_1) \leq Z(Q/N_2)$. Express $\pi(M/N_1)$ as L/N_2 . Then $M \leq L$. Setting $M = \alpha(N_1)$ yields $\alpha(N_1) \leq \alpha(N_2)$.

Let us now show that for each $N \leq Q$ there exists the least normal subloop $M \leq Q$ such that $M \leq N$ and $N/M \leq Z(Q/M)$. The operator β is defined so that $\beta(N) = M$.

6

To verify the existence of M first note that $\operatorname{Mlt}(Q/N)$ coincides with the action of $\operatorname{Mlt}(Q)$ upon the cosets modulo N. Indeed, cosets are conjugate blocks, and hence $\operatorname{Mlt}(Q)$ acts upon them. Now, L_x sends yN upon $x(yN) = (xy)N = L_{xN}(yN)$. The action of L_x coincides with L_{xN} , and this is similarly true for every R_x . The coincidence is transferred to the multiplication groups since these groups are generated by the left and the right translations.

The fact that aN belongs to Z(Q/N) thus means that each standard generator of $\operatorname{Inn}(Q)$ maps aN upon aN, by Theorem 24. If M_i , $i \in I$, are all $M_i \leq Q$ such that $M_i \leq N$ and $N/M_i \leq Z(Q/M_i)$, then $M = \bigcap M_i$ is a normal subloop of Q. Each standard generator of $\operatorname{Inn}(Q)$ maps aM_i , $a \in N$, to aM_i , for every $i \in I$. Hence it maps $aM = a(\bigcap M_i) = \bigcap (aM_i)$ upon aM, which implies $N/M \leq Z(Q/M)$.

The obvious inclusion $N/N \leq Z(Q/N)$ implies $\beta(N) \leq N$. Consider now normal subloops N_1 and N_2 such that $N_1 \leq N_2$. Let $M \leq Q$ be such that $N_2/M \leq Z(Q/M)$. Consider $a \in N_1$ and $\varphi \in \text{Inn}(Q)$. Then $\varphi(aM) = aM$ since $a \in N_2$ and $N_2/M \leq Z(Q/M)$. Furthermore, $aN_1 = N_1$ and $\varphi(N_1) = N_1$, because $N_1 \leq Q$. Hence $\varphi(a(M \cap N_1)) = a(M \cap N_1)$. Therefore $a(M \cap N_1) \in Z(Q/(N_1 \cap M))$, and thus $N_1/(M \cap N_1) \leq Z(Q/(M \cap N_1))$. Setting $M = \beta(N_2)$ implies that $\beta(N_1) \leq \beta(N_2) \cap N_1 \leq \beta(N_2)$.

It remains to verify that $\beta\alpha(N) \leq N$ and $\alpha\beta(N) \geq N$, for every $N \leq Q$. If $M = \alpha(N)$, then M/N = Z(Q/N). Hence $N \geq K$, where $K = \beta(M)$ is the least normal subloop such that $K \leq M$ and $M/K \leq Z(Q/K)$. Therefore $\beta\alpha(N) \leq N$. To see $\alpha\beta(N) \geq N$, just note that $N/\beta(N) \leq Z(Q/\beta(N))$.

This is why the first steps in the theory of nilpotent loops resemble those in the theory of nilpotent groups. A loop Q is thus *nilpotent of class* k if and only if $Z_k(Q) = Q$ and $k \ge 0$ is the least possible. Furthermore, each loop of nilpotency class 2 may be, up to isomorphism, expressed by an operation upon $G \times Z$, where both (G, +) and (Z, +) are abelian groups, and

 $(a, u) \cdot (b, v) = (a + b, u + v + \vartheta(a, b))$ for all $u, v \in Z$ and $a, b \in G$,

where $\vartheta: G \times G \to Z$ fulfils $\vartheta(0, a) = \vartheta(a, 0) = 0$, for all $a \in G$.

To see this consider a loop of nilpotency class two, and set Z = Z(Q). From each coset modulo Z choose exactly one element. The chosen elements form a set, say G, and this set may be endowned with the structure of the factorloop Q/Z. The factorloop is an abelian group. The operation of G will thus be written additively. If $g_i \in G$ and $z_i \in Z$, $i \in \{1, 2\}$, then there exists $g_3 \in G$ and $z_3 \in Z$ such that $g_1g_2 = g_3z_3$. Note, that $(g_1z_1)(g_2z_2) = g_3(z_3z_1z_2)$ and that $g_3 = g_1 + g_2$. Denote z_3 by $\vartheta(g_1, g_2)$. This yields $g_1z_1 \cdot g_2z_2 = (g_1 + g_2)(\vartheta(g_1, g_2)z_1z_2)$. Writing elements of Z additively thus shows that Q is isomorphic to a loop with operation

$$(g_1, z_1) \cdot (g_2, z_2) = (g_1 + g_2, \vartheta(g_1, g_2) + z_1 + z_2).$$

To get (0,0) as the neutral element of this loop it suffices to assume that the neutral element of Q is the element that is chosen from Z (which is also a coset). Such a choice also stipulates that $\vartheta(g,0) = 0 = \vartheta(0,g)$ for all $g \in G$.

The definition of nilpotency by means of the operators α and β allows to introduce further concepts for which the term nilpotency may be used. These concepts are not discussed here. The nilpotency defined above is sometimes called *central nilpotency* in order to distinguish it from those other concepts.

Left and right nuclei. Let Q be a loop. By Lemma 23, $N_{\lambda}(Q)$ are the points fixed by $(\text{RMlt}(Q))_1$, and $N_{\rho}(Q)$ are the points fixed by $(\text{LMlt}(Q))_1$. A similar characterization in terms of the multiplication groups is as follows:

Proposition 25. Let Q be a loop. Then

(1) $\{L_a; a \in N_\lambda(Q)\} = C_{\mathrm{Mlt}(Q)}(\mathrm{RMlt}(Q)) = C_{\mathrm{Sym}(Q)}(\mathrm{RMlt}(Q)), and$

(2)
$$\{R_a; a \in N_{\rho}(Q)\} = C_{\operatorname{Mlt}(Q)}(\operatorname{LMlt}(Q)) = C_{\operatorname{Sym}(Q)}(\operatorname{LMlt}(Q)).$$

Proof. If $a \in N_{\lambda}(Q)$ and $x, y \in Q$, then $L_a R_x(y) = a \cdot yx = ay \cdot x = R_x L_a(y)$. Hence $[L_a, R_x] = \mathrm{id}_Q$ if and only if $a \in N_{\lambda}(Q)$. If $\varphi \in (\mathrm{Sym}(Q))_1$ and $[L_a\varphi, R_x] = \mathrm{id}_Q$ for each $x \in Q$, then $a\varphi(yx) = a\varphi(y) \cdot x$ for all $x, y \in Q$. Setting y = 1 yields $L_a = L_a\varphi$. Thus $\varphi = \mathrm{id}_Q$.

Proposition 26. Let Q be a loop. If $\operatorname{RMlt}(Q) \leq \operatorname{Mlt}(Q)$, then $N_{\lambda}(Q) \leq Q$. If $\operatorname{LMlt}(Q) \leq \operatorname{Mlt}(Q)$, then $N_{\rho}(Q) \leq Q$.

Proof. If $\text{RMlt}(Q) \leq \text{Mlt}(Q)$, then the centralizer of RMlt(Q) is also a normal subgroup of Mlt(Q). In such a case $N_{\lambda}(Q)$ is an orbit of a normal subgroup of Mlt(Q). The rest follows from Lemma 12 and Corollary 19.

Proposition 27. If Q is a left Bol loop, then $\operatorname{RMlt}(Q) \trianglelefteq \operatorname{Mlt}(Q)$ and $N_{\lambda}(Q) \trianglelefteq Q$. If Q is a right Bol loop, then $\operatorname{LMlt}(Q) \trianglelefteq \operatorname{Mlt}(Q)$ and $N_{\rho}(Q) \trianglelefteq Q$. If Q is a Moufang loop, then $N(Q) \trianglelefteq Q$ and both $\operatorname{LMlt}(Q)$ and $\operatorname{RMlt}(Q)$ are normal subgroups of $\operatorname{Mlt}(Q)$.

Proof. By Proposition 26 it suffices to show that $\operatorname{RMlt}(Q) \trianglelefteq \operatorname{Mlt}(Q)$ if Q is left Bol, that is if $x(y \cdot xz) = (x \cdot yx)z$ for all $x, y, z \in Q$. The latter identity can be written as $L_x R_{xz} = R_z L_x R_x$. This means $L_x^{-1} R_z L_x = R_{xz} R_x^{-1}$. Nothing more is needed since Q is a LIP loop and $\operatorname{RMlt}(Q)$ is generated by the right translations $R_x, x \in Q$.

Transversals. Let $H \leq G$ be groups. A pair (A, B) of subsets of G is said to form *H*-connected transversals if A is a left transversal to H in G, B is a right transversal to H in G, and $[a, b] \in H$ for all $(a, b) \in A \times B$.

Lemma 28. Let Q be a loop. Put G = Mlt(Q) and H = Inn(Q). Furthermore, set $A = \{L_x; x \in Q\}$ and $B = \{R_x; x \in Q\}$. Then (A, B) forms H-connected transversals, $\langle A, B \rangle = G$, and the core of H in G is trivial.

Proof. As follows from Lemma 14 both A and B are both-sided transversals of H to G. The core of H in G is trivial by Lemma 15. Finally, $L_x R_y(1) = R_y L_x(1) = xy$ for all $x, y \in Q$.

There seems to be nothing remarkable in Lemma 28. The point is that the statement may be reversed. The proof is not long, but will not be included. We have:

Theorem 29. Let G and H be groups, and A and B subsets of G such that $H \leq G$, (A, B) forms H-connected transversals, $\langle A, B \rangle = G$, and the core of H in G is trivial. Then there exists a loop Q such that G = Mlt(Q), H = Inn(Q), $A = \{L_x; x \in Q\}$ and $B = \{R_x; x \in Q\}$.