
Multiplication groups

Preliminaries involving permutation groups. Let G be a permutation group
upon a set Ω. Fix an element ω ∈ Ω. The set of all g ∈ G that fixes ω is said to be
the stabilizer of G at ω. It is a subgroup and is denoted by Gω.

Lemma 1. Suppose that g ∈ G and α = g(ω). Then Gα = gGωg
−1. If G is

transitive, then Gω ∩ Z(G) = 1.

Proof. Let h be an element of G. Then h ∈ Gα ⇔ h(α) = α ⇔ hg(ω) = g(ω) ⇔
g−1hg(ω) = ω ⇔ g−1hg ∈ Gω ⇔ h ∈ gGωg−1. Suppose that G is transitive and
that h ∈ Z(G) fixes ω. Since G is transitive, for each α ∈ Ω there exists g ∈ G such
that g(ω) = α. Since h ∈ Gω, ghg−1 ∈ Gα. Therefore h = ghg−1 ∈ Gα. Hence
h(α) = α for each α ∈ Ω. Thus h = idΩ. �

Recall that if S is a subset of a group G, then NG(S) = {g ∈ G; gSg−1 = S}
is called the normalizer of S, and CG(S) = {g ∈ G; gs = sg for all s ∈ S} the
centralizer of S. Both NG(S) and CG(S) are subgroups of G. To prove that H ≤ G
is a subgroup of NG(S) it suffices to verify that hSh−1 ⊆ S for every h ∈ H. Indeed,
h−1S(h−1)−1 ⊆ S is the same as S ⊆ hSh−1. Similarly for centralizers.

Lemma 2. Let g be an element of G. Then Gg(ω) = Gω if and only if g ∈ NG(Gω).

Proof. By Lemma 1, Gg(ω) = Gω if and only if gGωg
−1 = Gω, which is the same

as g ∈ NG(Gω). �

Lemma 3. Let h and g be elements of G. Then hGω = gGω if and only if g(ω) =
h(ω), while Gωh = Gωg if and only if g−1(ω) = h−1(ω).

Proof. Since (Gωh)−1 = h−1Gω, only the first equality needs to be verified. Now,
hGω = gGω ⇔ h−1g ∈ Gω ⇔ h−1g(ω) = ω ⇔ g(ω) = h(ω). �

A set Γ ⊆ Ω is said to be a block (of G) if it is nonempty and satisfies the
implication

g(γ) ∈ Γ ⇒ g(Γ) ⊆ Γ

for all g ∈ G and γ ∈ Γ.

Lemma 4. Let Γ be a block. If g ∈ G, then either g(Γ) = Γ or g(Γ) ∩ Γ = ∅. In
any case, g(Γ) is a block of G as well.

Proof. Suppose first that there exist β, γ ∈ Γ such that g(γ) = β. Then g(Γ) ⊆ Γ
by the definition of a block. Since g−1(β) = γ, γ−1(Γ) ⊆ Γ too. Hence g(Γ) = Γ.
We have proved that this is true whenever γ(Γ) ∩ Γ 6= ∅.

To prove that g(Γ) is always a block, consider α ∈ g(Γ) and h ∈ G such that
h(α) = β ∈ g(Γ). Then hg(g−1(α)) = g(g−1(β)), and thus g−1hg(g−1(α)) =
g−1(β). Both g−1(α) and g−1(β) belong to Γ. Therefore g−1hg(Γ) = Γ, which
means h(g(Γ)) = g(Γ). We have shown that g(Γ) is a block. �

Blocks Γ1 and Γ2 are said to be conjugate if there exists g ∈ G such that
g(Γ1) = Γ2. The relation ‘to be conjugate’ clearly is an equivalence upon the set of
all blocks of G.

Corollary 5. Suppose that G is transitive. If Γ is a block of G, then the set of
all g(Γ), g ∈ G, partitions the set Ω. Furthermore, two blocks are conjugate if and
only if they induce the same partition of Ω.

Proof. Indeed, the transitivity ensures that the sets g(Γ) are blocks that cover all
of Ω. Moreover, any two such blocks are conjugate. The rest follows from Lemma 4
in an immediate fashion. �
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An equivalence ∼ of Ω is said to be stable under G if

α ∼ β ⇔ g(α) ∼ g(β) for each α, β ∈ Ω and g ∈ G.

In fact it is enough to prove that the implication

α ∼ β ⇒ g(α) ∼ g(β) for each α, β ∈ Ω and g ∈ G.

is satisfied, since then g(α) ∼ g(β) implies α = g−1g(α) ∼ g−1g(β) = β.

Lemma 6. Let ∼ be a stable equivalence. If α ∈ Ω and g ∈ G, then [α]∼ and
[g(α)]∼ are conjugate blocks. If G is transitive, then the blocks of ∼ form a partition
of Ω by conjugate blocks. On the other hand, every such partition induces a stable
equivalence.

Proof. By the definition of stable equivalence, g([α]∼) = [g(α)]∼, for every α ∈ Ω
and each g ∈ G. If Γ = [ω]∼ and g(ω) ∈ Γ, then g(Γ) = Γ. Hence each block of ∼
is a block of G. The rest follows from Corollary 5. �

Lemma 7. For α, β ∈ Ω set α ∼ β ⇔ Gα = Gβ. The equivalence ∼ is stable under
G. Furthermore, suppose that G is transitive, that ω ∈ G and that Γ = {α ∈ Ω;
Gω ⊆ Gα}. If Γ is a block of G, then Γ = [ω]∼.

Proof. If Gα = Gβ and g ∈ G, then Gg(α) = Gg(β), by Lemma 1. Suppose now
that G is transitive and that ω and Γ are as in the statement. Suppose that α ∈ Γ
and let g ∈ G be such that g(ω) = α. Then Gω ⊆ gGωg−1 = Gα, by Lemma 1 and
the definition of Γ. Since g(Γ) = Γ there is also g−1(ω) ∈ Γ, and so Gω ⊆ g−1Gωg.
Therefore Gω = gGωg

−1 = Gα. �

The following characterization of blocks is nearly self-evident. Note that it differs
from the definition of a block by considering the defining property just for one
element, i.e. the element ω.

Lemma 8. Suppose that Γ is a subset of the orbit G(ω) that contains ω. The
following is equivalent:

(1) Γ is a block;
(2) the ensuing implication holds for all g ∈ G:

g(ω) ∈ Γ ⇒ g(Γ) ⊆ Γ and g−1(ω) ∈ Γ;

(3) the ensuing implication holds for all g ∈ G:
g(ω) ∈ Γ ⇒ g(Γ) = Γ.

Proof. Points (2) and (3) are equivalent since if (2) holds, then g−1(ω) ∈ Γ implies
g−1(Γ) ⊆ Γ. If Γ is a block, then (3) holds, by Lemma 4. For the converse assume
that g(γ) ∈ Γ for some γ ∈ Γ and g ∈ G. Since Γ ⊆ G(ω), there exists h ∈ G
such that h(ω) = γ. This gives h(Γ) = Γ, gh(ω) ∈ Γ and gh(Γ) = Γ. Hence
g(Γ) = Γ. �

Lemma 9. Let H ≤ G be such that Gω ≤ H. Then Γ = H(ω) (the orbit of ω
under the action of H) is a block of G, and H = {g ∈ G; g(ω) ∈ Γ}.

Proof. Let g ∈ G be such that g(ω) ∈ H(ω). Then g(ω) = h(ω) for some h ∈ H.
Therefore h−1g ∈ Gω ≤ H, and thus g ∈ H. Hence g(H(ω)) = (gH)(ω) = H(ω).
That makes H(ω) a block. If g(ω) ∈ Γ, g ∈ G, then there exists h ∈ H such that
g(ω) = h(ω). Hence h−1g ∈ Gω ≤ H, and so g = h(h−1g) ∈ H. �

Lemma 10. Let Γ ⊆ G(ω) be a block of G such that ω ∈ Γ. Put H = {h ∈ G;
h(ω) ∈ Γ}. Then H is a subgroup of G that contains Gω, and Γ = H(ω).

Proof. Since Γ is a block within the orbit of ω, there has to be H = {h ∈ G; h(Γ) =
Γ}, by Lemma 8. This implies that H is a subgroup of G and that Γ = H(ω). �
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Note that {ω} is always a block of G and that the orbit G(ω) is also a block.
Lemmas 9 and 10 establish a 1-to-1 correspondence between blocks Γ ⊆ G(ω)

that include ω, and subgroups of G that contain Gω. The correspondence respects
inclusions. Hence it yields an isomorphism between the lattice of blocks that are
subsets ofG(ω) and contain ω, and the interval [Gω, G] in the lattice of all subgroups
of G. If G(ω) 6= {ω}, then Gω 6= G. In such a case the interval [Gω, G] contains
only two elements (two subgroups) if and only if there exists no block that is a
proper subset of G(ω) and contains at least two elements.

The permutation group G is said to be primitive if it is nontrivial and the only
blocks of G are Ω and {α}, α ∈ Ω. Since G(ω) is a block, a primitive group has to
be transitive. In view of the correspondence described above, the following claim
may be stated without a proof.

Lemma 11. A nontrivial transitive permutation group G is primitive if and only
if Gω is a maximal subgroup of G.

Lemma 12. If H EG and Γ is an orbit of H, then Γ is a block.

Proof. Suppose that ω ∈ Γ and put K = HGω. If k ∈ K, then there exists h ∈ H
such that k(ω) = h(ω). Thus Γ = K(ω). The statement follows from Lemma 9. �

Lemma 13. Let ∼ be the equivalence upon Ω given by Gα = Gβ. Assume that G
is transitive and put Γ = [ω]∼. Then Γ is a block of G, and {g ∈ G; g(ω) ∈ Γ} =
NG(Gω).

Proof. The set Γ is a block by Lemmas 7 and 6. By Lemma 2, Γ = NG(Gω)(ω).
The rest follows from Lemma 9 since NG(Gω) contains Gω. �

Suppose that U ≤ V are groups and that S ⊆ V . Call S a left transversal to
U in V if SU = V , 1 ∈ S, and s1U = s2U ⇒ s1 = s2, whenever s1, s2 ∈ S.
The right transversal is defined in a mirror way. A set that is both left and right
transversal is known as a two-sided tranversal, or just a transversal. The notion of
transversal is sometimes defined without stipulating that the transversal contains
the unit element 1.

The core of U in V is the greatest normal subgroup N E V that is contained in
U . Note that N =

⋂
g∈V gUg

−1.

Lemma 14. Let S be a subset of G that contains idG. S is the left transversal to
Gω in G if and only if for each α ∈ G(ω) there exists exactly one s ∈ S such that
s(ω) = α. Similarly, the set S is the right transversal to Gω in G if and only if for
each α ∈ G(ω) there exists exactly one s ∈ S such that s(α) = ω.

Proof. This follows from the description of cosets of Gω, as given in Lemma 3. �

Lemma 15. If G is transitive, then the core of Gω is trivial.

Proof. By Lemma 1, the core of Gω is equal to the intersection of all Gα, α ∈ Ω.
Of course, the only permutation that fixes each α ∈ Ω is the identity. �

Proposition 16. Suppose that T is a left transversal to Gω in G, and that X ⊆ G
generates G. For each α ∈ G(ω) denote by tα that element of T which sends ω
upon α. Then

Gω = 〈t−1
x(α)xtα; α ∈ G(ω) and x ∈ X〉.

Proof. For S ⊆ G set S±1 = {s, s−1; s ∈ S}. Each element of G may be thus
expressed as xn · · ·x1, where xi ∈ X±1, 1 ≤ i ≤ n. Denote by Y the set of all
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elements t−1
x(α)xtα, α ∈ G(ω) and x ∈ X. If β = x(α), then the inverse of such an

element is equal to t−1
x−1(β)x

−1tβ . Hence

Y ±1 = {t−1
x(α)xtα; α ∈ G(ω) and x ∈ X±1}.

Note that Y ±1 ⊆ Gω and that tω = idΩ.
Suppose now that g = xn · · ·x1 ∈ Gω, where x1, . . . , xn ∈ X±1. Put αi =

xi · · ·x1(ω), 0 ≤ i < n, and insert tαi
t−1
αi

= tαi
t−1
xi(αi−1) in between xi+1 and xi,

1 ≤ i < n. That makes

g = tωgtω = t−1
ω xn · · ·x1tω =

(
t−1
xn(αn−1)xntαn−1

)
· · ·
(
t−1
x1(α0)x1tα0

)
an element of 〈Y 〉. �

Quasigroup congruences. Let Q be a quasigroup. Set

LMlt(Q) = 〈Lx; x ∈ Q〉,
RMlt(Q) = 〈Rx; x ∈ Q〉 and

Mlt(Q) = 〈Lx, Rx; x ∈ Q〉.
Call these groups the left multiplication group, the right multiplication group and
the multiplication group of Q, respectively.

Proposition 17. Let Q be a quasigroup. An equivalence ∼ on Q is a congruence
if and only if for all x, y, z ∈ Q

x ∼ y ⇒ xz ∼ yz, zx ∼ zy, x/z ∼ y/z and z\x = z\y.

Proof. If ∗ is a binary operation on Q, then ∼ is compatible with ∗ if and only if
x ∼ y ⇒ x ∗ z ∼ y ∗ z and z ∗ x ∼ z ∗ y holds for all x, y, z ∈ Q. To see that this is
true consider a, b, c, d ∈ Q such that a ∼ b and c ∼ d. If the implication holds for
all x, y, z ∈ Q, then a ∗ c ∼ b ∗ c ∼ b ∗ d.

Due to this fact the proof may be restricted to verifying implications x ∼ y ⇒
z/x ∼ z/y and x ∼ y ⇒ x\z ∼ y\z. It is enough to prove the latter implication
because of mirror symmetry. Before doing so let us observe that all implications
assumed may be considered as equivalences. E.g., we have x ∼ y ⇔ xz ∼ yz. To
prove the converse direction suppose that xz ∼ yz. By the assumptions of the
statement (xz)/z ∼ (yz)/z. However (xz)/z = x and (yz)/z = y. Similarly in the
other cases.

Thus x\z ∼ y\z ⇔ z ∼ x(y\z) ⇔ z/(y\z) ∼ (x(y\z))/(y\z). Now, z/(y\z) = y
and x(y\z))/(y\z) = x. �

Theorem 18. Let Q be a quasigroup and let ∼ be an equivalence upon Q. The
equivalence ∼ is a congruence of Q if and only if it is stable under Mlt(Q).

Proof. The equivalence ∼ is stable under Mlt(Q) if x ∼ y implies g(x) ∼ g(y)
for each x, y ∈ Q and g ∈ G. For the implication to hold it suffices if it holds
for generators of Mlt(Q) and the inverses of these generators. That follows from
Proposition 17 sinceRz(x) = xz, Lz(x) = zx, R−1

z (x) = x/z and L−1
z (x) = z\x. �

Corollary 19. Let S be a nonempty subset of a quasigroup Q. The set S is a block
of a congruence if and only if it is a block of Mlt(Q). Each such block determines
exactly one congruence of Q.

Proof. Indeed, blocks of a stable equivalence are blocks of the permutation group,
and each block of a transitive group fully determines a stable equivalence. �

Corollary 20. Let Q be a quasigroup, |Q| > 1. The quasigroup is simple if and
only if Mlt(Q) is a primitive permutation group.
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Proof. Recall that a transitive group is said to be primitive if it possesses no non-
trivial block (i.e., a block that differs from the underlying set and contains more
than than one element.) �

Inner mapping group. Let Q be a loop. The stabilizer (MltQ)1 is known as
the inner mapping group. It is denoted by Inn(Q). Thus ϕ ∈ Inn(Q) if and only if
ϕ(1) = 1 and ϕ ∈ Mlt(Q).

Theorem 21. Let Q be a loop. Then Inn(Q) = 〈L−1
xy LxLy, R

−1
yxRxRy, R

−1
x Lx;

x, y ∈ Q〉.

Proof. Use Proposition 16 with G = Mlt(Q), X = {Ly, Ry; y ∈ Q} and T = {Ly;
y ∈ Q}. Note that T is indeed a (left) transversal to Inn(Q) since Ly(1) = y for
every y ∈ Q, and L1 = idQ.

By Proposition 16 the set of all L−1
xy LxLy and L−1

yxRxLy generate Inn(Q). Ob-

viously, R−1
x Lx ∈ Inn(Q). The rest follows from Ly = Ry(R−1

y Ly) and L−1
yx =

(R−1
yxLyx)−1R−1

yx . �

Mappings L−1
xy LxLy, R−1

yxRxRy, R−1
x Lx are known as the standard generators

of Inn(Q). There are many other mappings that belong to Inn(Q). For example
[Lx, Ry] = L−1

x R−1
y LxRy ∈ Inn(Q) for all x, y ∈ Q.

Normal subloops. Let ∼ be a congruence of a loop Q. If x ∼ 1 and y ∼ 1, then
xy ∼ 1, x/y ∼ 1 and x\y ∼ 1 since 1 = 1 · 1 = 1/1 = 1\1. The set [∼]1 is thus a
subloop of Q.

A subloop of a loop Q is called normal if it is a block of a congruence. By
Corollary 19 the normal subloop determines exactly one congruence of Q. Denote
the congruence by ∼. Blocks of ∼ are the blocks of Mlt(Q) conjugate to N = [1]∼.
Hence they are equal to Lx(N) = xN = Nx = Rx(N). A block xN = Nx is called
a coset of N . The fact that N is a normal subloop of Q is denoted, like in groups,
by N EQ.

Theorem 22. Let Q be a loop and let N be a subloop of Q. The following is
equivalent:

(i) N is normal;
(ii) ϕ(N) ⊆ N for each ϕ ∈ Inn(Q);
(iii) ϕ(N) = N for each ϕ ∈ Inn(Q);
(iv) xN = Nx, x(yN) = (xy)N and (Ny)x = N(yx) for all x, y ∈ Q.

Proof. If N is a block of a congruence ∼, x ∈ N and ϕ ∈ Inn(Q), then 1 = ϕ(1) ∼
ϕ(x). Hence (i) ⇒ (ii). If (ii) holds and ϕ ∈ Inn(Q), then both ϕ(N) ⊆ N and
ϕ−1(N) ⊆ N are true. Thus ϕ(N) = N , and (ii) ⇒ (iii). The condition (iv) can
be also expressed as L−1

xy LxLy(N) = N , R−1
yxRxRy(N) = N and R−1

x Lx(N) = N .
In view of Theorem 21 this means that (iii) ⇔ (iv).

It remains to prove (iii) ⇒ (i). Each element of Mlt(Q) may be written as Lxϕ,
where ϕ ∈ Inn(Q) and x ∈ Q. (This is because the set of all left translations forms
a transversal to Inn(Q).) If x ∈ N , then Lxϕ(N) = xN = N . If x /∈ N , then
Lxϕ(N) = xN and xN ∩N = ∅. This means that N is a block of Mlt(Q). �

Centres. Recall that the centre of a loop Q is defined as the set of all z ∈ Q such
that z ∈ N(Q) = Nλ(Q) ∩Nµ(Q) ∩Nρ(Q) and that zx = xz for all x ∈ Q.

The following facts are direct enough to be stated without a proof.

Lemma 23. Let a be an element of a loop Q. Then

(1) a ∈ Nλ ⇔ R−1
yxRxRy(a) = a for all x, y ∈ Q;

(2) a ∈ Nµ ⇔ [Lx, Ry](a) = a for all x, y ∈ Q; and
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(3) a ∈ Nρ ⇔ L−1
xy LxLy(a) = a for all x, y ∈ Q;

Theorem 24. Let Q be a loop. Then Z(Q) is a normal subloop of Q. An element
z ∈ Q belongs to Z(Q) if and only if ϕ(z) = z for all ϕ ∈ Inn(Q). Further-
more, Z(Mlt(Q)) = {Lz; z ∈ Z(Q)} = {Rz; z ∈ Z(Q)} and NMlt(Q)(Inn(Q)) =
Inn(Q)Z(Mlt(Q)).

Proof. If a ∈ Z(Q), then a is fixed by every standard generator of Inn(Q), by
Lemma 23 and Theorem 21. Thus each ϕ ∈ Inn(Q) fixes every a ∈ Z(Q). For the
converse direction use Lemma 23 and observe again that Tx(a) = a ⇔ ax = xa.

Since N(Q) is a subloop of Q, the product ab belongs to N(Q) for all a, b ∈ Z(Q).
Therefore Lab = LaLb = RaRb = Rba = Rab. Also, La−1 = L−1

a = R−1
a = Ra−1 .

Hence Z(Q) is a subloop of Q. Since Inn(Q) fixes each element of a ∈ Z(Q) it
has to be a normal subloop, by Theorem 22. That makes Z(Q) a block of Mlt(Q).
Elements z ∈ Z(Q) have been characterized as those elements of Q that are fixed by
each ϕ ∈ Inn(Q). In other words z ∈ Z(Q) ⇔ Inn(Q) ⊆ (Mlt(Q))z. By Lemma 7,
z ∈ Z(Q) ⇔ Inn(Q) = (Mlt(Q))z.

If z ∈ Z(Q), then Lz = Rz and both LzRx = RxLz and RzLx = LxRz are clearly
true for each x ∈ Q. Hence Lz ∈ Z(Mlt(Q)). If ψ ∈ Z(Mlt(Q)) and ϕ ∈ Inn(Q),
then ϕ(ψ(1)) = ψ(ϕ(1)) = ψ(1). Hence ψ(1) = z ∈ Z(Q), and L−1

z ψ ∈ Inn(Q).
No nontrivial element of Inn(Q) may be central, say by Lemma 1. This verifies
the description of Z(Mlt(Q)) and shows that Inn(Q)Z(Mlt(Q)) = {ψ ∈ Mlt(Q);
ψ(1) ∈ Z(Q)}. The latter group is also equal toNMlt(Q)(Inn(Q)), by Lemma 13. �

Nilpotency. Let S be a set of subsets of a set X. Suppose that X ∈ S and that S
contains the least element, say I. Thus I ⊆ X for each X ∈ S. In the application
below X = Q, Q a loop, and I is the trivial subloop, i.e. I = {1}.

Suppose that upon S there are defined two transformations, say α and β. Let
both of them respect inclusions, i.e., if S1, S1 ∈ S and S1 ⊆ S2, then α(S1) ⊆ α(S2)
and β(S1) ⊆ β(S2). Futhermore, let both of them be monotonous, with α(S) ⊇ S
and β(S) ⊆ S, for every S ∈ S.

Finally, let α and β be interconnected by

βα(S) ⊆ S and αβ(S) ⊇ S, for every S ∈ S.

In such a situation it is possible to build lower series X ⊇ β(X) ⊇ β2(X) ⊇ . . . ,
and upper series I ⊆ α(I) ⊆ α2(I) ⊆ . . . . It is well known that the lower series
ends at I if and only if the upper series ends at X, and that, if the latter is true,
then both series are of equal length. If the length is n+ 1, then n is the nilpotency
class of S (with respect to α and β) and S is said to be nilpotent. Of course, if S
is deterministically derived from an object O, then the notions of nilpotency and
nilpotency class are related to that object.

The objects in question now are loops, and the systems of subsets are the normal
subloops of a loop Q. If N E Q, then there obviously exists a unique M E Q
such that N ≤ M and M/N = Z(Q/N). This is the operator α. The normal
subloops αi(1), i ≥ 0, are the iterated centers Zi(Q), with Z1(Q) = Z(Q) and
Zi+1(Q)/Zi(Q) = Z(Q/Zi(Q)).

The inclusion M = α(N) ⊇ N follows from the fact that N/N is the trivial
subgroup of Q/N . Hence N/N ≤ Z(Q/N). Suppose now that N1 ≤ N2 are normal
subloops of Q. Denote by π the homomorphism Q/N1 → Q/N2, xN1 7→ xN2. If
M E Q is such that N1 ≤ M and M/N1 ≤ Z(Q/N1), then π(M/N1) ≤ Z(Q/N2).
Express π(M/N1) as L/N2. Then M ≤ L. Setting M = α(N1) yields α(N1) ≤
α(N2).

Let us now show that for each N E Q there exists the least normal subloop
M EQ such that M ≤ N and N/M ≤ Z(Q/M). The operator β is defined so that
β(N) = M .
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To verify the existence of M first note that Mlt(Q/N) coincides with the action of
Mlt(Q) upon the cosets modulo N . Indeed, cosets are conjugate blocks, and hence
Mlt(Q) acts upon them. Now, Lx sends yN upon x(yN) = (xy)N = LxN (yN).
The action of Lx coincides with LxN , and this is similarly true for every Rx. The
coincidence is transferred to the multiplication groups since these groups are gen-
erated by the left and the right translations.

The fact that aN belongs to Z(Q/N) thus means that each standard generator
of Inn(Q) maps aN upon aN , by Theorem 24. If Mi, i ∈ I, are all MiEQ such that
Mi ≤ N and N/Mi ≤ Z(Q/Mi), then M =

⋂
Mi is a normal subloop of Q. Each

standard generator of Inn(Q) maps aMi, a ∈ N , to aMi, for every i ∈ I. Hence it
maps aM = a(

⋂
Mi) =

⋂
(aMi) upon aM , which implies N/M ≤ Z(Q/M).

The obvious inclusion N/N ≤ Z(Q/N) implies β(N) ≤ N . Consider now normal
subloops N1 and N2 such that N1 ≤ N2. Let M E Q be such that N2/M ≤
Z(Q/M). Consider a ∈ N1 and ϕ ∈ Inn(Q). Then ϕ(aM) = aM since a ∈ N2 and
N2/M ≤ Z(Q/M). Furthermore, aN1 = N1 and ϕ(N1) = N1, because N1 E Q.
Hence ϕ(a(M ∩ N1)) = a(M ∩ N1). Therefore a(M ∩ N1) ∈ Z(Q/(N1 ∩ M)),
and thus N1/(M ∩ N1) ≤ Z(Q/(M ∩ N1)). Setting M = β(N2) implies that
β(N1) ≤ β(N2) ∩N1 ≤ β(N2).

It remains to verify that βα(N) ≤ N and αβ(N) ≥ N , for every N E Q. If
M = α(N), then M/N = Z(Q/N). Hence N ≥ K, where K = β(M) is the least
normal subloop such that K ≤ M and M/K ≤ Z(Q/K). Therefore βα(N) ≤ N .
To see αβ(N) ≥ N , just note that N/β(N) ≤ Z(Q/β(N)).

This is why the first steps in the theory of nilpotent loops resemble those in
the theory of nilpotent groups. A loop Q is thus nilpotent of class k if and only if
Zk(Q) = Q and k ≥ 0 is the least possible. Furthermore, each loop of nilpotency
class 2 may be, up to isomorphism, expressed by an operation upon G× Z, where
both (G,+) and (Z,+) are abelian groups, and

(a, u) · (b, v) = (a+ b, u+ v + ϑ(a, b)) for all u, v ∈ Z and a, b ∈ G,

where ϑ : G×G→ Z fulfils ϑ(0, a) = ϑ(a, 0) = 0, for all a ∈ G.
To see this consider a loop of nilpotency class two, and set Z = Z(Q). From each

coset modulo Z choose exactly one element. The chosen elements form a set, say
G, and this set may be endowned with the structure of the factorloop Q/Z. The
factorloop is an abelian group. The operation of G will thus be written additively.
If gi ∈ G and zi ∈ Z, i ∈ {1, 2}, then there exists g3 ∈ G and z3 ∈ Z such that
g1g2 = g3z3. Note, that (g1z1)(g2z2) = g3(z3z1z2) and that g3 = g1 + g2. Denote
z3 by ϑ(g1, g2). This yields g1z1 · g2z2 = (g1 + g2)(ϑ(g1, g2)z1z2). Writing elements
of Z additively thus shows that Q is isomorphic to a loop with operation

(g1, z1) · (g2, z2) = (g1 + g2, ϑ(g1, g2) + z1 + z2).

To get (0, 0) as the neutral element of this loop it suffices to assume that the neutral
element of Q is the element that is chosen from Z (which is also a coset). Such a
choice also stipulates that ϑ(g, 0) = 0 = ϑ(0, g) for all g ∈ G.

The definition of nilpotency by means of the operators α and β allows to intro-
duce further concepts for which the term nilpotency may be used. These concepts
are not discussed here. The nilpotency defined above is sometimes called central
nilpotency in order to distinguish it from those other concepts.

Left and right nuclei. Let Q be a loop. By Lemma 23, Nλ(Q) are the points
fixed by (RMlt(Q))1, and Nρ(Q) are the points fixed by (LMlt(Q))1. A similar
characterization in terms of the multiplication groups is as follows:

Proposition 25. Let Q be a loop. Then

(1) {La; a ∈ Nλ(Q)} = CMlt(Q)(RMlt(Q)) = CSym(Q)(RMlt(Q)), and
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(2) {Ra; a ∈ Nρ(Q)} = CMlt(Q)(LMlt(Q)) = CSym(Q)(LMlt(Q)).

Proof. If a ∈ Nλ(Q) and x, y ∈ Q, then LaRx(y) = a·yx = ay ·x = RxLa(y). Hence
[La, Rx] = idQ if and only if a ∈ Nλ(Q). If ϕ ∈ (Sym(Q))1 and [Laϕ,Rx] = idQ
for each x ∈ Q, then aϕ(yx) = aϕ(y) · x for all x, y ∈ Q. Setting y = 1 yields
La = Laϕ. Thus ϕ = idQ. �

Proposition 26. Let Q be a loop. If RMlt(Q) E Mlt(Q), then Nλ(Q) E Q. If
LMlt(Q)EMlt(Q), then Nρ(Q)EQ.

Proof. If RMlt(Q) E Mlt(Q), then the centralizer of RMlt(Q) is also a normal
subgroup of Mlt(Q). In such a case Nλ(Q) is an orbit of a normal subgroup of
Mlt(Q). The rest follows from Lemma 12 and Corollary 19. �

Proposition 27. If Q is a left Bol loop, then RMlt(Q)EMlt(Q) and Nλ(Q)EQ.
If Q is a right Bol loop, then LMlt(Q)EMlt(Q) and Nρ(Q)EQ. If Q is a Moufang
loop, then N(Q) E Q and both LMlt(Q) and RMlt(Q) are normal subgroups of
Mlt(Q).

Proof. By Proposition 26 it suffices to show that RMlt(Q) E Mlt(Q) if Q is left
Bol, that is if x(y · xz) = (x · yx)z for all x, y, z ∈ Q. The latter identity can be
written as LxRxz = RzLxRx. This means L−1

x RzLx = RxzR
−1
x . Nothing more is

needed since Q is a LIP loop and RMlt(Q) is generated by the right translations
Rx, x ∈ Q. �

Transversals. Let H ≤ G be groups. A pair (A,B) of subsets of G is said to
form H-connected transversals if A is a left transversal to H in G, B is a right
transversal to H in G, and [a, b] ∈ H for all (a, b) ∈ A×B.

Lemma 28. Let Q be a loop. Put G = Mlt(Q) and H = Inn(Q). Furthermore,
set A = {Lx; x ∈ Q} and B = {Rx; x ∈ Q}. Then (A,B) forms H-connected
transversals, 〈A,B〉 = G, and the core of H in G is trivial.

Proof. As follows from Lemma 14 both A and B are both-sided transversals of H to
G. The core of H in G is trivial by Lemma 15. Finally, LxRy(1) = RyLx(1) = xy
for all x, y ∈ Q. �

There seems to be nothing remarkable in Lemma 28. The point is that the
statement may be reversed. The proof is not long, but will not be included. We
have:

Theorem 29. Let G and H be groups, and A and B subsets of G such that H ≤ G,
(A,B) forms H-connected transversals, 〈A,B〉 = G, and the core of H in G is
trivial. Then there exists a loop Q such that G = Mlt(Q), H = Inn(Q), A = {Lx;
x ∈ Q} and B = {Rx; x ∈ Q}.


