Multiplication groups

Preliminaries involving permutation groups. Let G be a permutation group upon a set Ω. Fix an element $\omega \in \Omega$. The set of all $g \in G$ that fixes ω is said to be the stabilizer of G at ω. It is a subgroup and is denoted by G_{ω}.

Lemma 1. Suppose that $g \in G$ and $\alpha=g(\omega)$. Then $G_{\alpha}=g G_{\omega} g^{-1}$. If G is transitive, then $G_{\omega} \cap Z(G)=1$.

Proof. Let h be an element of G. Then $h \in G_{\alpha} \Leftrightarrow h(\alpha)=\alpha \Leftrightarrow h g(\omega)=g(\omega) \Leftrightarrow$ $g^{-1} h g(\omega)=\omega \Leftrightarrow g^{-1} h g \in G_{\omega} \Leftrightarrow h \in g G_{\omega} g^{-1}$. Suppose that G is transitive and that $h \in Z(G)$ fixes ω. Since G is transitive, for each $\alpha \in \Omega$ there exists $g \in G$ such that $g(\omega)=\alpha$. Since $h \in G_{\omega}, g h g^{-1} \in G_{\alpha}$. Therefore $h=g h g^{-1} \in G_{\alpha}$. Hence $h(\alpha)=\alpha$ for each $\alpha \in \Omega$. Thus $h=\operatorname{id}_{\Omega}$.

Recall that if S is a subset of a group G, then $N_{G}(S)=\left\{g \in G ; g S g^{-1}=S\right\}$ is called the normalizer of S, and $C_{G}(S)=\{g \in G$; $g s=s g$ for all $s \in S\}$ the centralizer of S. Both $N_{G}(S)$ and $C_{G}(S)$ are subgroups of G. To prove that $H \leq G$ is a subgroup of $N_{G}(S)$ it suffices to verify that $h S h^{-1} \subseteq S$ for every $h \in H$. Indeed, $h^{-1} S\left(h^{-1}\right)^{-1} \subseteq S$ is the same as $S \subseteq h S h^{-1}$. Similarly for centralizers.

Lemma 2. Let g be an element of G. Then $G_{g(\omega)}=G_{\omega}$ if and only if $g \in N_{G}\left(G_{\omega}\right)$.
Proof. By Lemma 1, $G_{g(\omega)}=G_{\omega}$ if and only if $g G_{\omega} g^{-1}=G_{\omega}$, which is the same as $g \in N_{G}\left(G_{\omega}\right)$.
Lemma 3. Let h and g be elements of G. Then $h G_{\omega}=g G_{\omega}$ if and only if $g(\omega)=$ $h(\omega)$, while $G_{\omega} h=G_{\omega} g$ if and only if $g^{-1}(\omega)=h^{-1}(\omega)$.

Proof. Since $\left(G_{\omega} h\right)^{-1}=h^{-1} G_{\omega}$, only the first equality needs to be verified. Now, $h G_{\omega}=g G_{\omega} \Leftrightarrow h^{-1} g \in G_{\omega} \Leftrightarrow h^{-1} g(\omega)=\omega \Leftrightarrow g(\omega)=h(\omega)$.

A set $\Gamma \subseteq \Omega$ is said to be a block (of G) if it is nonempty and satisfies the implication

$$
g(\gamma) \in \Gamma \Rightarrow g(\Gamma) \subseteq \Gamma
$$

for all $g \in G$ and $\gamma \in \Gamma$.
Lemma 4. Let Γ be a block. If $g \in G$, then either $g(\Gamma)=\Gamma$ or $g(\Gamma) \cap \Gamma=\emptyset$. In any case, $g(\Gamma)$ is a block of G as well.

Proof. Suppose first that there exist $\beta, \gamma \in \Gamma$ such that $g(\gamma)=\beta$. Then $g(\Gamma) \subseteq \Gamma$ by the definition of a block. Since $g^{-1}(\beta)=\gamma, \gamma^{-1}(\Gamma) \subseteq \Gamma$ too. Hence $g(\Gamma)=\Gamma$. We have proved that this is true whenever $\gamma(\Gamma) \cap \Gamma \neq \emptyset$.

To prove that $g(\Gamma)$ is always a block, consider $\alpha \in g(\Gamma)$ and $h \in G$ such that $h(\alpha)=\beta \in g(\Gamma)$. Then $h g\left(g^{-1}(\alpha)\right)=g\left(g^{-1}(\beta)\right)$, and thus $g^{-1} h g\left(g^{-1}(\alpha)\right)=$ $g^{-1}(\beta)$. Both $g^{-1}(\alpha)$ and $g^{-1}(\beta)$ belong to Γ. Therefore $g^{-1} h g(\Gamma)=\Gamma$, which means $h(g(\Gamma))=g(\Gamma)$. We have shown that $g(\Gamma)$ is a block.

Blocks Γ_{1} and Γ_{2} are said to be conjugate if there exists $g \in G$ such that $g\left(\Gamma_{1}\right)=\Gamma_{2}$. The relation 'to be conjugate' clearly is an equivalence upon the set of all blocks of G.

Corollary 5. Suppose that G is transitive. If Γ is a block of G, then the set of all $g(\Gamma), g \in G$, partitions the set Ω. Furthermore, two blocks are conjugate if and only if they induce the same partition of Ω.
Proof. Indeed, the transitivity ensures that the sets $g(\Gamma)$ are blocks that cover all of Ω. Moreover, any two such blocks are conjugate. The rest follows from Lemma 4 in an immediate fashion.

An equivalence \sim of Ω is said to be stable under G if

$$
\alpha \sim \beta \Leftrightarrow g(\alpha) \sim g(\beta) \text { for each } \alpha, \beta \in \Omega \text { and } g \in G .
$$

In fact it is enough to prove that the implication

$$
\alpha \sim \beta \Rightarrow g(\alpha) \sim g(\beta) \text { for each } \alpha, \beta \in \Omega \text { and } g \in G .
$$

is satisfied, since then $g(\alpha) \sim g(\beta)$ implies $\alpha=g^{-1} g(\alpha) \sim g^{-1} g(\beta)=\beta$.
Lemma 6. Let \sim be a stable equivalence. If $\alpha \in \Omega$ and $g \in G$, then $[\alpha]_{\sim}$ and $[g(\alpha)]_{\sim}$ are conjugate blocks. If G is transitive, then the blocks of \sim form a partition of Ω by conjugate blocks. On the other hand, every such partition induces a stable equivalence.
Proof. By the definition of stable equivalence, $g\left([\alpha]_{\sim}\right)=[g(\alpha)]_{\sim}$, for every $\alpha \in \Omega$ and each $g \in G$. If $\Gamma=[\omega]_{\sim}$ and $g(\omega) \in \Gamma$, then $g(\Gamma)=\Gamma$. Hence each block of \sim is a block of G. The rest follows from Corollary 5 .

Lemma 7. For $\alpha, \beta \in \Omega$ set $\alpha \sim \beta \Leftrightarrow G_{\alpha}=G_{\beta}$. The equivalence \sim is stable under G. Furthermore, suppose that G is transitive, that $\omega \in G$ and that $\Gamma=\{\alpha \in \Omega$; $\left.G_{\omega} \subseteq G_{\alpha}\right\}$. If Γ is a block of G, then $\Gamma=[\omega]_{\sim}$.
Proof. If $G_{\alpha}=G_{\beta}$ and $g \in G$, then $G_{g(\alpha)}=G_{g(\beta)}$, by Lemma 1. Suppose now that G is transitive and that ω and Γ are as in the statement. Suppose that $\alpha \in \Gamma$ and let $g \in G$ be such that $g(\omega)=\alpha$. Then $G_{\omega} \subseteq g G_{\omega} g^{-1}=G_{\alpha}$, by Lemma 1 and the definition of Γ. Since $g(\Gamma)=\Gamma$ there is also $g^{-1}(\omega) \in \Gamma$, and so $G_{\omega} \subseteq g^{-1} G_{\omega} g$. Therefore $G_{\omega}=g G_{\omega} g^{-1}=G_{\alpha}$.

The following characterization of blocks is nearly self-evident. Note that it differs from the definition of a block by considering the defining property just for one element, i.e. the element ω.
Lemma 8. Suppose that Γ is a subset of the orbit $G(\omega)$ that contains ω. The following is equivalent:
(1) Γ is a block;
(2) the ensuing implication holds for all $g \in G$:

$$
g(\omega) \in \Gamma \Rightarrow g(\Gamma) \subseteq \Gamma \text { and } g^{-1}(\omega) \in \Gamma
$$

(3) the ensuing implication holds for all $g \in G$:

$$
g(\omega) \in \Gamma \Rightarrow g(\Gamma)=\Gamma
$$

Proof. Points (2) and (3) are equivalent since if (2) holds, then $g^{-1}(\omega) \in \Gamma$ implies $g^{-1}(\Gamma) \subseteq \Gamma$. If Γ is a block, then (3) holds, by Lemma 4. For the converse assume that $g(\gamma) \in \Gamma$ for some $\gamma \in \Gamma$ and $g \in G$. Since $\Gamma \subseteq G(\omega)$, there exists $h \in G$ such that $h(\omega)=\gamma$. This gives $h(\Gamma)=\Gamma, g h(\omega) \in \Gamma$ and $g h(\Gamma)=\Gamma$. Hence $g(\Gamma)=\Gamma$.
Lemma 9. Let $H \leq G$ be such that $G_{\omega} \leq H$. Then $\Gamma=H(\omega)$ (the orbit of ω under the action of H) is a block of G, and $H=\{g \in G ; g(\omega) \in \Gamma\}$.
Proof. Let $g \in G$ be such that $g(\omega) \in H(\omega)$. Then $g(\omega)=h(\omega)$ for some $h \in H$. Therefore $h^{-1} g \in G_{\omega} \leq H$, and thus $g \in H$. Hence $g(H(\omega))=(g H)(\omega)=H(\omega)$. That makes $H(\omega)$ a block. If $g(\omega) \in \Gamma, g \in G$, then there exists $h \in H$ such that $g(\omega)=h(\omega)$. Hence $h^{-1} g \in G_{\omega} \leq H$, and so $g=h\left(h^{-1} g\right) \in H$.

Lemma 10. Let $\Gamma \subseteq G(\omega)$ be a block of G such that $\omega \in \Gamma$. Put $H=\{h \in G$; $h(\omega) \in \Gamma\}$. Then H is a subgroup of G that contains G_{ω}, and $\Gamma=H(\omega)$.
Proof. Since Γ is a block within the orbit of ω, there has to be $H=\{h \in G ; h(\Gamma)=$ $\Gamma\}$, by Lemma 8. This implies that H is a subgroup of G and that $\Gamma=H(\omega)$.

Note that $\{\omega\}$ is always a block of G and that the orbit $G(\omega)$ is also a block.
Lemmas 9 and 10 establish a 1-to- 1 correspondence between blocks $\Gamma \subseteq G(\omega)$ that include ω, and subgroups of G that contain G_{ω}. The correspondence respects inclusions. Hence it yields an isomorphism between the lattice of blocks that are subsets of $G(\omega)$ and contain ω, and the interval $\left[G_{\omega}, G\right]$ in the lattice of all subgroups of G. If $G(\omega) \neq\{\omega\}$, then $G_{\omega} \neq G$. In such a case the interval $\left[G_{\omega}, G\right]$ contains only two elements (two subgroups) if and only if there exists no block that is a proper subset of $G(\omega)$ and contains at least two elements.

The permutation group G is said to be primitive if it is nontrivial and the only blocks of G are Ω and $\{\alpha\}, \alpha \in \Omega$. Since $G(\omega)$ is a block, a primitive group has to be transitive. In view of the correspondence described above, the following claim may be stated without a proof.

Lemma 11. A nontrivial transitive permutation group G is primitive if and only if G_{ω} is a maximal subgroup of G.
Lemma 12. If $H \unlhd G$ and Γ is an orbit of H, then Γ is a block.
Proof. Suppose that $\omega \in \Gamma$ and put $K=H G_{\omega}$. If $k \in K$, then there exists $h \in H$ such that $k(\omega)=h(\omega)$. Thus $\Gamma=K(\omega)$. The statement follows from Lemma 9.

Lemma 13. Let \sim be the equivalence upon Ω given by $G_{\alpha}=G_{\beta}$. Assume that G is transitive and put $\Gamma=[\omega]_{\sim}$. Then Γ is a block of G, and $\{g \in G ; g(\omega) \in \Gamma\}=$ $N_{G}\left(G_{\omega}\right)$.
Proof. The set Γ is a block by Lemmas 7 and 6. By Lemma 2, $\Gamma=N_{G}\left(G_{\omega}\right)(\omega)$. The rest follows from Lemma 9 since $N_{G}\left(G_{\omega}\right)$ contains G_{ω}.

Suppose that $U \leq V$ are groups and that $S \subseteq V$. Call S a left transversal to U in V if $S U=V, 1 \in S$, and $s_{1} U=s_{2} U \Rightarrow s_{1}=s_{2}$, whenever $s_{1}, s_{2} \in S$. The right transversal is defined in a mirror way. A set that is both left and right transversal is known as a two-sided tranversal, or just a transversal. The notion of transversal is sometimes defined without stipulating that the transversal contains the unit element 1.

The core of U in V is the greatest normal subgroup $N \unlhd V$ that is contained in U. Note that $N=\bigcap_{g \in V} g U g^{-1}$.
Lemma 14. Let S be a subset of G that contains id_{G}. S is the left transversal to G_{ω} in G if and only if for each $\alpha \in G(\omega)$ there exists exactly one $s \in S$ such that $s(\omega)=\alpha$. Similarly, the set S is the right transversal to G_{ω} in G if and only if for each $\alpha \in G(\omega)$ there exists exactly one $s \in S$ such that $s(\alpha)=\omega$.

Proof. This follows from the description of cosets of G_{ω}, as given in Lemma 3.
Lemma 15. If G is transitive, then the core of G_{ω} is trivial.
Proof. By Lemma 1, the core of G_{ω} is equal to the intersection of all $G_{\alpha}, \alpha \in \Omega$. Of course, the only permutation that fixes each $\alpha \in \Omega$ is the identity.

Proposition 16. Suppose that T is a left transversal to G_{ω} in G, and that $X \subseteq G$ generates G. For each $\alpha \in G(\omega)$ denote by t_{α} that element of T which sends ω upon α. Then

$$
G_{\omega}=\left\langle t_{x(\alpha)}^{-1} x t_{\alpha} ; \alpha \in G(\omega) \text { and } x \in X\right\rangle
$$

Proof. For $S \subseteq G$ set $S^{ \pm 1}=\left\{s, s^{-1} ; s \in S\right\}$. Each element of G may be thus expressed as $x_{n} \cdots x_{1}$, where $x_{i} \in X^{ \pm 1}, 1 \leq i \leq n$. Denote by Y the set of all
elements $t_{x(\alpha)}^{-1} x t_{\alpha}, \alpha \in G(\omega)$ and $x \in X$. If $\beta=x(\alpha)$, then the inverse of such an element is equal to $t_{x^{-1}(\beta)}^{-1} x^{-1} t_{\beta}$. Hence

$$
Y^{ \pm 1}=\left\{t_{x(\alpha)}^{-1} x t_{\alpha} ; \alpha \in G(\omega) \text { and } x \in X^{ \pm 1}\right\}
$$

Note that $Y^{ \pm 1} \subseteq G_{\omega}$ and that $t_{\omega}=\operatorname{id}_{\Omega}$.
Suppose now that $g=x_{n} \cdots x_{1} \in G_{\omega}$, where $x_{1}, \ldots, x_{n} \in X^{ \pm 1}$. Put $\alpha_{i}=$ $x_{i} \cdots x_{1}(\omega), 0 \leq i<n$, and insert $t_{\alpha_{i}} t_{\alpha_{i}}^{-1}=t_{\alpha_{i}} t_{x_{i}\left(\alpha_{i-1}\right)}^{-1}$ in between x_{i+1} and x_{i}, $1 \leq i<n$. That makes

$$
g=t_{\omega} g t_{\omega}=t_{\omega}^{-1} x_{n} \cdots x_{1} t_{\omega}=\left(t_{x_{n}\left(\alpha_{n-1}\right)}^{-1} x_{n} t_{\alpha_{n-1}}\right) \cdots\left(t_{x_{1}\left(\alpha_{0}\right)}^{-1} x_{1} t_{\alpha_{0}}\right)
$$

an element of $\langle Y\rangle$.
Quasigroup congruences. Let Q be a quasigroup. Set

$$
\begin{aligned}
\operatorname{LMlt}(Q) & =\left\langle L_{x} ; x \in Q\right\rangle \\
\operatorname{RMlt}(Q) & =\left\langle R_{x} ; x \in Q\right\rangle \text { and } \\
\operatorname{Mlt}(Q) & =\left\langle L_{x}, R_{x} ; x \in Q\right\rangle
\end{aligned}
$$

Call these groups the left multiplication group, the right multiplication group and the multiplication group of Q, respectively.

Proposition 17. Let Q be a quasigroup. An equivalence \sim on Q is a congruence if and only if for all $x, y, z \in Q$

$$
x \sim y \Rightarrow x z \sim y z, z x \sim z y, x / z \sim y / z \text { and } z \backslash x=z \backslash y .
$$

Proof. If $*$ is a binary operation on Q, then \sim is compatible with $*$ if and only if $x \sim y \Rightarrow x * z \sim y * z$ and $z * x \sim z * y$ holds for all $x, y, z \in Q$. To see that this is true consider $a, b, c, d \in Q$ such that $a \sim b$ and $c \sim d$. If the implication holds for all $x, y, z \in Q$, then $a * c \sim b * c \sim b * d$.

Due to this fact the proof may be restricted to verifying implications $x \sim y \Rightarrow$ $z / x \sim z / y$ and $x \sim y \Rightarrow x \backslash z \sim y \backslash z$. It is enough to prove the latter implication because of mirror symmetry. Before doing so let us observe that all implications assumed may be considered as equivalences. E.g., we have $x \sim y \Leftrightarrow x z \sim y z$. To prove the converse direction suppose that $x z \sim y z$. By the assumptions of the statement $(x z) / z \sim(y z) / z$. However $(x z) / z=x$ and $(y z) / z=y$. Similarly in the other cases.

Thus $x \backslash z \sim y \backslash z \Leftrightarrow z \sim x(y \backslash z) \Leftrightarrow z /(y \backslash z) \sim(x(y \backslash z)) /(y \backslash z)$. Now, $z /(y \backslash z)=y$ and $x(y \backslash z)) /(y \backslash z)=x$.
Theorem 18. Let Q be a quasigroup and let \sim be an equivalence upon Q. The equivalence \sim is a congruence of Q if and only if it is stable under $\operatorname{Mlt}(Q)$.

Proof. The equivalence \sim is stable under $\operatorname{Mlt}(Q)$ if $x \sim y$ implies $g(x) \sim g(y)$ for each $x, y \in Q$ and $g \in G$. For the implication to hold it suffices if it holds for generators of $\operatorname{Mlt}(Q)$ and the inverses of these generators. That follows from Proposition 17 since $R_{z}(x)=x z, L_{z}(x)=z x, R_{z}^{-1}(x)=x / z$ and $L_{z}^{-1}(x)=z \backslash x$.
Corollary 19. Let S be a nonempty subset of a quasigroup Q. The set S is a block of a congruence if and only if it is a block of $\operatorname{Mlt}(Q)$. Each such block determines exactly one congruence of Q.

Proof. Indeed, blocks of a stable equivalence are blocks of the permutation group, and each block of a transitive group fully determines a stable equivalence.

Corollary 20. Let Q be a quasigroup, $|Q|>1$. The quasigroup is simple if and only if $\operatorname{Mlt}(Q)$ is a primitive permutation group.

Proof. Recall that a transitive group is said to be primitive if it possesses no nontrivial block (i.e., a block that differs from the underlying set and contains more than than one element.)
Inner mapping group. Let Q be a loop. The stabilizer (Mlt $Q)_{1}$ is known as the inner mapping group. It is denoted by $\operatorname{Inn}(Q)$. Thus $\varphi \in \operatorname{Inn}(Q)$ if and only if $\varphi(1)=1$ and $\varphi \in \operatorname{Mlt}(Q)$.

Theorem 21. Let Q be a loop. Then $\operatorname{Inn}(Q)=\left\langle L_{x y}^{-1} L_{x} L_{y}, R_{y x}^{-1} R_{x} R_{y}, R_{x}^{-1} L_{x}\right.$; $x, y \in Q\rangle$.
Proof. Use Proposition 16 with $G=\operatorname{Mlt}(Q), X=\left\{L_{y}, R_{y} ; y \in Q\right\}$ and $T=\left\{L_{y}\right.$; $y \in Q\}$. Note that T is indeed a (left) transversal to $\operatorname{Inn}(Q)$ since $L_{y}(1)=y$ for every $y \in Q$, and $L_{1}=\mathrm{id}_{Q}$.

By Proposition 16 the set of all $L_{x y}^{-1} L_{x} L_{y}$ and $L_{y x}^{-1} R_{x} L_{y}$ generate $\operatorname{Inn}(Q)$. Obviously, $R_{x}^{-1} L_{x} \in \operatorname{Inn}(Q)$. The rest follows from $L_{y}=R_{y}\left(R_{y}^{-1} L_{y}\right)$ and $L_{y x}^{-1}=$ $\left(R_{y x}^{-1} L_{y x}\right)^{-1} R_{y x}^{-1}$.

Mappings $L_{x y}^{-1} L_{x} L_{y}, R_{y x}^{-1} R_{x} R_{y}, R_{x}^{-1} L_{x}$ are known as the standard generators of $\operatorname{Inn}(Q)$. There are many other mappings that belong to $\operatorname{Inn}(Q)$. For example $\left[L_{x}, R_{y}\right]=L_{x}^{-1} R_{y}^{-1} L_{x} R_{y} \in \operatorname{Inn}(Q)$ for all $x, y \in Q$.
Normal subloops. Let \sim be a congruence of a loop Q. If $x \sim 1$ and $y \sim 1$, then $x y \sim 1, x / y \sim 1$ and $x \backslash y \sim 1$ since $1=1 \cdot 1=1 / 1=1 \backslash 1$. The set $[\sim]_{1}$ is thus a subloop of Q.

A subloop of a loop Q is called normal if it is a block of a congruence. By Corollary 19 the normal subloop determines exactly one congruence of Q. Denote the congruence by \sim. Blocks of \sim are the blocks of $\operatorname{Mlt}(Q)$ conjugate to $N=[1]_{\sim}$. Hence they are equal to $L_{x}(N)=x N=N x=R_{x}(N)$. A block $x N=N x$ is called a coset of N. The fact that N is a normal subloop of Q is denoted, like in groups, by $N \unlhd Q$.

Theorem 22. Let Q be a loop and let N be a subloop of Q. The following is equivalent:
(i) N is normal;
(ii) $\varphi(N) \subseteq N$ for each $\varphi \in \operatorname{Inn}(Q)$;
(iii) $\varphi(N)=N$ for each $\varphi \in \operatorname{Inn}(Q)$;
(iv) $x N=N x, x(y N)=(x y) N$ and $(N y) x=N(y x)$ for all $x, y \in Q$.

Proof. If N is a block of a congruence $\sim, x \in N$ and $\varphi \in \operatorname{Inn}(Q)$, then $1=\varphi(1) \sim$ $\varphi(x)$. Hence (i) \Rightarrow (ii). If (ii) holds and $\varphi \in \operatorname{Inn}(Q)$, then both $\varphi(N) \subseteq N$ and $\varphi^{-1}(N) \subseteq N$ are true. Thus $\varphi(N)=N$, and (ii) \Rightarrow (iii). The condition (iv) can be also expressed as $L_{x y}^{-1} L_{x} L_{y}(N)=N, R_{y x}^{-1} R_{x} R_{y}(N)=N$ and $R_{x}^{-1} L_{x}(N)=N$. In view of Theorem 21 this means that (iii) \Leftrightarrow (iv).

It remains to prove (iii) \Rightarrow (i). Each element of $\operatorname{Mlt}(Q)$ may be written as $L_{x} \varphi$, where $\varphi \in \operatorname{Inn}(Q)$ and $x \in Q$. (This is because the set of all left translations forms a transversal to $\operatorname{Inn}(Q)$.) If $x \in N$, then $L_{x} \varphi(N)=x N=N$. If $x \notin N$, then $L_{x} \varphi(N)=x N$ and $x N \cap N=\emptyset$. This means that N is a block of $\operatorname{Mlt}(Q)$.

Centres. Recall that the centre of a loop Q is defined as the set of all $z \in Q$ such that $z \in N(Q)=N_{\lambda}(Q) \cap N_{\mu}(Q) \cap N_{\rho}(Q)$ and that $z x=x z$ for all $x \in Q$.

The following facts are direct enough to be stated without a proof.
Lemma 23. Let a be an element of a loop Q. Then
(1) $a \in N_{\lambda} \Leftrightarrow R_{y x}^{-1} R_{x} R_{y}(a)=a$ for all $x, y \in Q$;
(2) $a \in N_{\mu} \Leftrightarrow\left[L_{x}, R_{y}\right](a)=a$ for all $x, y \in Q$; and
(3) $a \in N_{\rho} \Leftrightarrow L_{x y}^{-1} L_{x} L_{y}(a)=a$ for all $x, y \in Q$;

Theorem 24. Let Q be a loop. Then $Z(Q)$ is a normal subloop of Q. An element $z \in Q$ belongs to $Z(Q)$ if and only if $\varphi(z)=z$ for all $\varphi \in \operatorname{Inn}(Q)$. Furthermore, $Z(\operatorname{Mlt}(Q))=\left\{L_{z} ; z \in Z(Q)\right\}=\left\{R_{z} ; z \in Z(Q)\right\}$ and $N_{\operatorname{Mlt}(Q)}(\operatorname{Inn}(Q))=$ $\operatorname{Inn}(Q) Z(\operatorname{Mlt}(Q))$.
Proof. If $a \in Z(Q)$, then a is fixed by every standard generator of $\operatorname{Inn}(Q)$, by Lemma 23 and Theorem 21. Thus each $\varphi \in \operatorname{Inn}(Q)$ fixes every $a \in Z(Q)$. For the converse direction use Lemma 23 and observe again that $T_{x}(a)=a \Leftrightarrow a x=x a$.

Since $N(Q)$ is a subloop of Q, the product $a b$ belongs to $N(Q)$ for all $a, b \in Z(Q)$. Therefore $L_{a b}=L_{a} L_{b}=R_{a} R_{b}=R_{b a}=R_{a b}$. Also, $L_{a^{-1}}=L_{a}^{-1}=R_{a}^{-1}=R_{a^{-1}}$. Hence $Z(Q)$ is a subloop of Q. Since $\operatorname{Inn}(Q)$ fixes each element of $a \in Z(Q)$ it has to be a normal subloop, by Theorem 22. That makes $Z(Q)$ a block of $\operatorname{Mlt}(Q)$. Elements $z \in Z(Q)$ have been characterized as those elements of Q that are fixed by each $\varphi \in \operatorname{Inn}(Q)$. In other words $z \in Z(Q) \Leftrightarrow \operatorname{Inn}(Q) \subseteq(\operatorname{Mlt}(Q))_{z}$. By Lemma 7, $z \in Z(Q) \Leftrightarrow \operatorname{Inn}(Q)=(\operatorname{Mlt}(Q))_{z}$.

If $z \in Z(Q)$, then $L_{z}=R_{z}$ and both $L_{z} R_{x}=R_{x} L_{z}$ and $R_{z} L_{x}=L_{x} R_{z}$ are clearly true for each $x \in Q$. Hence $L_{z} \in Z(\operatorname{Mlt}(Q))$. If $\psi \in Z(\operatorname{Mlt}(Q))$ and $\varphi \in \operatorname{Inn}(Q)$, then $\varphi(\psi(1))=\psi(\varphi(1))=\psi(1)$. Hence $\psi(1)=z \in Z(Q)$, and $L_{z}^{-1} \psi \in \operatorname{Inn}(Q)$. No nontrivial element of $\operatorname{Inn}(Q)$ may be central, say by Lemma 1. This verifies the description of $Z(\operatorname{Mlt}(Q))$ and shows that $\operatorname{Inn}(Q) Z(\operatorname{Mlt}(Q))=\{\psi \in \operatorname{Mlt}(Q)$; $\psi(1) \in Z(Q)\}$. The latter group is also equal to $N_{\mathrm{Mlt}(Q)}(\operatorname{Inn}(Q))$, by Lemma 13 .
Nilpotency. Let \mathcal{S} be a set of subsets of a set X. Suppose that $X \in \mathcal{S}$ and that \mathcal{S} contains the least element, say I. Thus $I \subseteq X$ for each $X \in \mathcal{S}$. In the application below $X=Q, Q$ a loop, and I is the trivial subloop, i.e. $I=\{1\}$.

Suppose that upon \mathcal{S} there are defined two transformations, say α and β. Let both of them respect inclusions, i.e., if $S_{1}, S_{1} \in \mathcal{S}$ and $S_{1} \subseteq S_{2}$, then $\alpha\left(S_{1}\right) \subseteq \alpha\left(S_{2}\right)$ and $\beta\left(S_{1}\right) \subseteq \beta\left(S_{2}\right)$. Futhermore, let both of them be monotonous, with $\alpha(S) \supseteq S$ and $\beta(S) \subseteq S$, for every $S \in \mathcal{S}$.

Finally, let α and β be interconnected by

$$
\beta \alpha(S) \subseteq S \text { and } \alpha \beta(S) \supseteq S, \text { for every } S \in \mathcal{S}
$$

In such a situation it is possible to build lower series $X \supseteq \beta(X) \supseteq \beta^{2}(X) \supseteq \ldots$, and upper series $I \subseteq \alpha(I) \subseteq \alpha^{2}(I) \subseteq \ldots$. It is well known that the lower series ends at I if and only if the upper series ends at X, and that, if the latter is true, then both series are of equal length. If the length is $n+1$, then n is the nilpotency class of \mathcal{S} (with respect to α and β) and \mathcal{S} is said to be nilpotent. Of course, if \mathcal{S} is deterministically derived from an object \mathcal{O}, then the notions of nilpotency and nilpotency class are related to that object.

The objects in question now are loops, and the systems of subsets are the normal subloops of a loop Q. If $N \unlhd Q$, then there obviously exists a unique $M \unlhd Q$ such that $N \leq M$ and $M / N=Z(Q / N)$. This is the operator α. The normal subloops $\alpha^{i}(1), i \geq 0$, are the iterated centers $Z_{i}(Q)$, with $Z_{1}(Q)=Z(Q)$ and $Z_{i+1}(Q) / Z_{i}(Q)=Z\left(Q / Z_{i}(Q)\right)$.

The inclusion $M=\alpha(N) \supseteq N$ follows from the fact that N / N is the trivial subgroup of Q / N. Hence $N / N \leq Z(Q / N)$. Suppose now that $N_{1} \leq N_{2}$ are normal subloops of Q. Denote by π the homomorphism $Q / N_{1} \rightarrow Q / N_{2}, x N_{1} \mapsto x N_{2}$. If $M \unlhd Q$ is such that $N_{1} \leq M$ and $M / N_{1} \leq Z\left(Q / N_{1}\right)$, then $\pi\left(M / N_{1}\right) \leq Z\left(Q / N_{2}\right)$. Express $\pi\left(M / N_{1}\right)$ as L / N_{2}. Then $M \leq L$. Setting $M=\alpha\left(N_{1}\right)$ yields $\alpha\left(N_{1}\right) \leq$ $\alpha\left(N_{2}\right)$.

Let us now show that for each $N \unlhd Q$ there exists the least normal subloop $M \unlhd Q$ such that $M \leq N$ and $N / M \leq \bar{Z}(Q / M)$. The operator β is defined so that $\beta(N)=M$.

To verify the existence of M first note that $\operatorname{Mlt}(Q / N)$ coincides with the action of $\operatorname{Mlt}(Q)$ upon the cosets modulo N. Indeed, cosets are conjugate blocks, and hence $\operatorname{Mlt}(Q)$ acts upon them. Now, L_{x} sends $y N$ upon $x(y N)=(x y) N=L_{x N}(y N)$. The action of L_{x} coincides with $L_{x N}$, and this is similarly true for every R_{x}. The coincidence is transferred to the multiplication groups since these groups are generated by the left and the right translations.

The fact that $a N$ belongs to $Z(Q / N)$ thus means that each standard generator of $\operatorname{Inn}(Q)$ maps $a N$ upon $a N$, by Theorem 24 . If $M_{i}, i \in I$, are all $M_{i} \unlhd Q$ such that $M_{i} \leq N$ and $N / M_{i} \leq Z\left(Q / M_{i}\right)$, then $M=\bigcap M_{i}$ is a normal subloop of Q. Each standard generator of $\operatorname{Inn}(Q)$ maps $a M_{i}, a \in N$, to $a M_{i}$, for every $i \in I$. Hence it maps $a M=a\left(\bigcap M_{i}\right)=\bigcap\left(a M_{i}\right)$ upon $a M$, which implies $N / M \leq Z(Q / M)$.

The obvious inclusion $N / N \leq Z(Q / N)$ implies $\beta(N) \leq N$. Consider now normal subloops N_{1} and N_{2} such that $N_{1} \leq N_{2}$. Let $M \unlhd Q$ be such that $N_{2} / M \leq$ $Z(Q / M)$. Consider $a \in N_{1}$ and $\varphi \in \operatorname{Inn}(Q)$. Then $\varphi(a M)=a M$ since $a \in N_{2}$ and $N_{2} / M \leq Z(Q / M)$. Furthermore, $a N_{1}=N_{1}$ and $\varphi\left(N_{1}\right)=N_{1}$, because $N_{1} \unlhd Q$. Hence $\varphi\left(a\left(M \cap N_{1}\right)\right)=a\left(M \cap N_{1}\right)$. Therefore $a\left(M \cap N_{1}\right) \in Z\left(Q /\left(N_{1} \cap M\right)\right)$, and thus $N_{1} /\left(M \cap N_{1}\right) \leq Z\left(Q /\left(M \cap N_{1}\right)\right)$. Setting $M=\beta\left(N_{2}\right)$ implies that $\beta\left(N_{1}\right) \leq \beta\left(N_{2}\right) \cap N_{1} \leq \beta\left(N_{2}\right)$.

It remains to verify that $\beta \alpha(N) \leq N$ and $\alpha \beta(N) \geq N$, for every $N \unlhd Q$. If $M=\alpha(N)$, then $M / N=Z(Q / N)$. Hence $N \geq K$, where $K=\beta(M)$ is the least normal subloop such that $K \leq M$ and $M / K \leq Z(Q / K)$. Therefore $\beta \alpha(N) \leq N$. To see $\alpha \beta(N) \geq N$, just note that $N / \beta(N) \leq Z(Q / \beta(N))$.

This is why the first steps in the theory of nilpotent loops resemble those in the theory of nilpotent groups. A loop Q is thus nilpotent of class k if and only if $Z_{k}(Q)=Q$ and $k \geq 0$ is the least possible. Furthermore, each loop of nilpotency class 2 may be, up to isomorphism, expressed by an operation upon $G \times Z$, where both $(G,+)$ and $(Z,+)$ are abelian groups, and

$$
(a, u) \cdot(b, v)=(a+b, u+v+\vartheta(a, b)) \text { for all } u, v \in Z \text { and } a, b \in G,
$$

where $\vartheta: G \times G \rightarrow Z$ fulfils $\vartheta(0, a)=\vartheta(a, 0)=0$, for all $a \in G$.
To see this consider a loop of nilpotency class two, and set $Z=Z(Q)$. From each coset modulo Z choose exactly one element. The chosen elements form a set, say G, and this set may be endowned with the structure of the factorloop Q / Z. The factorloop is an abelian group. The operation of G will thus be written additively. If $g_{i} \in G$ and $z_{i} \in Z, i \in\{1,2\}$, then there exists $g_{3} \in G$ and $z_{3} \in Z$ such that $g_{1} g_{2}=g_{3} z_{3}$. Note, that $\left(g_{1} z_{1}\right)\left(g_{2} z_{2}\right)=g_{3}\left(z_{3} z_{1} z_{2}\right)$ and that $g_{3}=g_{1}+g_{2}$. Denote z_{3} by $\vartheta\left(g_{1}, g_{2}\right)$. This yields $g_{1} z_{1} \cdot g_{2} z_{2}=\left(g_{1}+g_{2}\right)\left(\vartheta\left(g_{1}, g_{2}\right) z_{1} z_{2}\right)$. Writing elements of Z additively thus shows that Q is isomorphic to a loop with operation

$$
\left(g_{1}, z_{1}\right) \cdot\left(g_{2}, z_{2}\right)=\left(g_{1}+g_{2}, \vartheta\left(g_{1}, g_{2}\right)+z_{1}+z_{2}\right)
$$

To get $(0,0)$ as the neutral element of this loop it suffices to assume that the neutral element of Q is the element that is chosen from Z (which is also a coset). Such a choice also stipulates that $\vartheta(g, 0)=0=\vartheta(0, g)$ for all $g \in G$.

The definition of nilpotency by means of the operators α and β allows to introduce further concepts for which the term nilpotency may be used. These concepts are not discussed here. The nilpotency defined above is sometimes called central nilpotency in order to distinguish it from those other concepts.
Left and right nuclei. Let Q be a loop. By Lemma 23, $N_{\lambda}(Q)$ are the points fixed by $(\operatorname{RMlt}(Q))_{1}$, and $N_{\rho}(Q)$ are the points fixed by $(\operatorname{LMlt}(Q))_{1}$. A similar characterization in terms of the multiplication groups is as follows:

Proposition 25. Let Q be a loop. Then
(1) $\left\{L_{a} ; a \in N_{\lambda}(Q)\right\}=C_{\operatorname{Mlt}(Q)}(\operatorname{RMlt}(Q))=C_{\operatorname{Sym}(Q)}(\operatorname{RMlt}(Q))$, and
(2) $\left\{R_{a} ; a \in N_{\rho}(Q)\right\}=C_{\operatorname{Mlt}(Q)}(\operatorname{LMlt}(Q))=C_{\operatorname{Sym}(Q)}(\operatorname{LMlt}(Q))$.

Proof. If $a \in N_{\lambda}(Q)$ and $x, y \in Q$, then $L_{a} R_{x}(y)=a \cdot y x=a y \cdot x=R_{x} L_{a}(y)$. Hence $\left[L_{a}, R_{x}\right]=\operatorname{id}_{Q}$ if and only if $a \in N_{\lambda}(Q)$. If $\varphi \in(\operatorname{Sym}(Q))_{1}$ and $\left[L_{a} \varphi, R_{x}\right]=\operatorname{id}_{Q}$ for each $x \in Q$, then $a \varphi(y x)=a \varphi(y) \cdot x$ for all $x, y \in Q$. Setting $y=1$ yields $L_{a}=L_{a} \varphi$. Thus $\varphi=\operatorname{id}_{Q}$.

Proposition 26. Let Q be a loop. If $\operatorname{RMlt}(Q) \unlhd \operatorname{Mlt}(Q)$, then $N_{\lambda}(Q) \unlhd Q$. If $\operatorname{LMlt}(Q) \unlhd \operatorname{Mlt}(Q)$, then $N_{\rho}(Q) \unlhd Q$.
Proof. If $\operatorname{RMlt}(Q) \unlhd \operatorname{Mlt}(Q)$, then the centralizer of $\operatorname{RMlt}(Q)$ is also a normal subgroup of $\operatorname{Mlt}(Q)$. In such a case $N_{\lambda}(Q)$ is an orbit of a normal subgroup of $\operatorname{Mlt}(Q)$. The rest follows from Lemma 12 and Corollary 19.

Proposition 27. If Q is a left Bol loop, then $\operatorname{RMlt}(Q) \unlhd \operatorname{Mlt}(Q)$ and $N_{\lambda}(Q) \unlhd Q$. If Q is a right Bol loop, then $\operatorname{LMlt}(Q) \unlhd \operatorname{Mlt}(Q)$ and $N_{\rho}(Q) \unlhd Q$. If Q is a Moufang loop, then $N(Q) \unlhd Q$ and both $\operatorname{LMlt}(Q)$ and $\operatorname{RMlt}(Q)$ are normal subgroups of $\operatorname{Mlt}(Q)$.

Proof. By Proposition 26 it suffices to show that $\operatorname{RMlt}(Q) \unlhd \operatorname{Mlt}(Q)$ if Q is left Bol, that is if $x(y \cdot x z)=(x \cdot y x) z$ for all $x, y, z \in Q$. The latter identity can be written as $L_{x} R_{x z}=R_{z} L_{x} R_{x}$. This means $L_{x}^{-1} R_{z} L_{x}=R_{x z} R_{x}^{-1}$. Nothing more is needed since Q is a LIP loop and $\operatorname{RMlt}(Q)$ is generated by the right translations $R_{x}, x \in Q$.

Transversals. Let $H \leq G$ be groups. A pair (A, B) of subsets of G is said to form H-connected transversals if A is a left transversal to H in G, B is a right transversal to H in G, and $[a, b] \in H$ for all $(a, b) \in A \times B$.
Lemma 28. Let Q be a loop. Put $G=\operatorname{Mlt}(Q)$ and $H=\operatorname{Inn}(Q)$. Furthermore, set $A=\left\{L_{x} ; x \in Q\right\}$ and $B=\left\{R_{x} ; x \in Q\right\}$. Then (A, B) forms H-connected transversals, $\langle A, B\rangle=G$, and the core of H in G is trivial.

Proof. As follows from Lemma 14 both A and B are both-sided transversals of H to G. The core of H in G is trivial by Lemma 15. Finally, $L_{x} R_{y}(1)=R_{y} L_{x}(1)=x y$ for all $x, y \in Q$.

There seems to be nothing remarkable in Lemma 28. The point is that the statement may be reversed. The proof is not long, but will not be included. We have:
Theorem 29. Let G and H be groups, and A and B subsets of G such that $H \leq G$, (A, B) forms H-connected transversals, $\langle A, B\rangle=G$, and the core of H in G is trivial. Then there exists a loop Q such that $G=\operatorname{Mlt}(Q), H=\operatorname{Inn}(Q), A=\left\{L_{x}\right.$; $x \in Q\}$ and $B=\left\{R_{x} ; x \in Q\right\}$.

