9. Let Φ be a mixed Poisson point process with the driving measure $Y \cdot \Lambda$, where Y is a non-negative random variable and Λ is a locally finite diffuse measure. Determine the covariance $cov(\Phi(B_1), \Phi(B_2))$ for $B_1, B_2 \in \mathcal{B}_0$ and show that it is non-negative.

NOTE
$$\overline{\Psi}(g) = \overline{Z}$$
 $E[\Phi(g)] = E[E[\Phi(g)] \times \overline{J} = E[Y \wedge (g)] = \wedge (g) \cdot EY$
 $P_{o}(Y \cdot \wedge (g))$
 $E[\Phi(g)]^{2} = E[E[\Phi(g)^{2}] \times \overline{J} = \dots$
 $P_{o}(X \cdot \wedge (g))$
 $P_{o}(X \cdot \wedge (g))$

$$Val = \Lambda(B)^2 \cdot MNY + \Lambda(B) \cdot EY$$
 $Variance of expectation of conditional$
 $cond. expectation$
 $Variance$

LOV(IBA), 更(B2))=crr(更(B、B2),更(BA) 是(BA))+crr(更(BA)B2),更(BA))+crr(更(BA)B2),更(BA)+crr(更(BA)B2),更(BA))

$$cor(P(A), P(B)) = \Lambda(A)\Lambda(B) \cdot \Lambda \Omega \gamma \qquad \Lambda(B_1 \cdot B_2) \cdot \Lambda(B_2)$$

$$cor(P(B_1), P(B_2)) = \Lambda \Omega \gamma \left[\Lambda(B_1 \cdot B_2) \cdot \Lambda(B_1 \cdot B_2) + \Lambda(B_1 \cdot B_2) \cdot \Lambda(B_1 \cdot B_2) + \Lambda(B_2 \cdot B_1) \cdot \Lambda(B_1 \cdot B_2) + \Lambda(B_1 \cdot B_2) \cdot \Lambda(B_1 \cdot B_2) + \Lambda(B_1 \cdot B_2) \cdot \Lambda(B_1 \cdot B_2) \cdot \Lambda(B_1 \cdot B_2) + \Lambda(B_1 \cdot B_2) \cdot \Lambda(B$$

= NOTY [\((B₁) \((B₂) \)] + \(\bar{\mathbb{E}} \bar{\mathbb{Y}} \cdot \(\A(B_1 \nabla B_2) \) \(\alpha \)

20 \(20 \) \(20 \) \(20 \)

makes songe: $\Phi(B_1)$ is high =) $\Phi(B_2)$ is likely to be high. Leven if B_1 , B_2 disjoint).