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What we know
I joint cdf

FX,Y (x, y) = P (X ≤ x&Y ≤ y).

I joint pdf: fX,Y ≥ 0 such that

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds.

I important example: multivariate normal distribution

Image by Wikipedia editors Piotrg and Bscan.













Conditioning

Definition (restricting a r.v. to a subset)
X is a r.v. on (Ω,F , P ), B ∈ F , s.t. P (B) > 0.

FX|B(x) := P (X ≤ x | B)

fX|B is the corresponding pdf.

I if B = {X ∈ S}, then

fX|B(x) =

{
fX(x)
P (X∈S) if x ∈ S
0 otherwise





Total cdf & pdf

Theorem (total cdf, total pdf)
Let X be a continuous r.v., let B1, B2, . . . be a partition of Ω.
Then

FX(x) =
∑
i

P (Bi)FX|Bi
(x) and

fX(x) =
∑
i

P (Bi)fX|Bi
(x).

Proof: law of total probability.





Marginal pdf

Theorem

fX(x) =

∫
y∈R

fX,Y (x, y)dy

fY (y) =

∫
x∈R

fX,Y (x, y)dx







Conditional pdf

Definition
For continuous r.v. X, Y we define their conditional pdf by

fX|Y (x|y) :=
fX,Y (x, y)

fY (y)

when fY (y) > 0, otherwise we do not define it.

I recall that fY (y) =
∫
x∈R fX,Y (x, y)dx

I for a fixed y the function x 7→ fX|Y (x|y) is a pdf







Conditional, joint and marginal pdf

Theorem

fX,Y (x, y) = fY (y)fX|Y (x|y)

fX(x) =

∫ ∞
−∞

fY (y)fX|Y (x|y)dy







Sum of continuous r.v.

Theorem
Let X, Y be independent random variables. Then Z = X + Y is
also a continuous r.v. and its pdf is a convolution of fX , fY .
That is,

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx.







Example of a convolution









Conditional density and expectation
I E

(
X | B

)
:=
∫∞
−∞ x · fX|B(x)dx

I E
(
g(X

)
|B) =

∫∞
−∞ g(x)fX|B(x)dx

Theorem (total expectation)
Let X be a continuous r.v. If B1, B2, . . . is a partition of Ω, then

E
(
X
)

=
∑
i

P (Bi)E
(
X | Bi

)
.

Proof: by total pdf.





Conditional pdf and expectation
I fX|Y (x|y) :=

fX,Y (x,y)
fY (y) is a pdf of X, given Y = y

I E
(
X | Y = y

)
:=
∫∞
−∞ x · fX|Y (x, y)dx is the expectation of

this r.v.
I E

(
g(X

)
|Y = y) =

∫∞
−∞ g(x) · fX|Y (x, y)dx

I An analogy of the law of total expectation:

E
(
X
)

=

∫ ∞
−∞

E
(
X | Y = y

)
fY (y)dy

I E
(
X
)

= E(E
(
X | Y

)
)
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Covariance

Definition
For r.v.’s X, Y we define their covariance by formula

cov(X,Y ) = E
(
(X − EX)(Y − EY )

)
.

Theorem

cov(X,Y ) = E
(
XY

)
− E

(
X
)
E
(
Y
)

I var(X) = cov(X,X)

I cov(X, aY + bZ + c) = a cov(X,Y ) + b cov(X,Z)

I cov(X,Y ) = 0 if X,Y are independent
I but not only then

























Correlation

Definition
Correlation of random variables X, Y is defined by

%(X,Y ) =
cov(X,Y )√
var(X) var(Y )

.

I “scaled covariance”
I −1 ≤ %(X,Y ) ≤ 1 (exercise)
I Correlation does not imply causation! (In particular,

correlation is symmetric.)
I OTOH, uncorrelation does not imply independence.

(Extreme case: X any r.v., Y = +X or Y = −X, both with
the same probability.)







Variance of a sum

Theorem
Let X =

∑n
i=1Xi. Then

var(X) =

n∑
i=1

n∑
j=1

cov(Xi, Xj) =

n∑
i=1

var(Xi) +
∑
i 6=j

cov(Xi, Xj).

In particular, if X1, . . . , Xn are independent, then

var(X) =

n∑
i=1

var(Xi).
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Cauchy inequality

Theorem
Let X, Y have finite expectation and variance. Then

E
(
XY

)
≤
√
E
(
X2
)
E
(
Y 2
)

I Corollary for correlation: −1 ≤ %(X,Y ) ≤ 1





Jensen inequality

Theorem
Let X have finite expectation and let g be a convex real functin.
Then

E
(
g(X

)
) ≥ g(E

(
X
)
).

(For concave function we have the opposite inequality.)





Markov inequality

Theorem
Suppose X ≥ 0 and a > 0. Then

P (X ≥ a) ≤
E
(
X
)

a
.









Chebyshev inequality

Theorem
Let X have finite expectation µ and variance σ2, let a > 0. Then

P (|X − µ| ≥ a · σ) ≤ 1

a2
.







Chernoff inequality

Theorem
Let X =

∑n
i=1Xi, where Xi are i.i.d. attaining ±1 with

probability 1/2. Then for t > 0 we have

P (X ≤ −t) = P (X ≥ t) ≤ e−t2/2σ2
,

where σ = σX =
√
n.

Without proof.
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Strong law of large numbers

Theorem
Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Let
Sn = (X1 + · · ·+Xn)/n be the sample mean. Then we have

lim
n→∞

Sn = µ almost surely (i.e. with probability 1).

We say that sequence Sn converges to µ almost surely.



Monte Carlo integration
How to compute

∫
x∈A g(x)dx?

In particular

g(x) =

{
1 for x ∈ S
0 otherwise

. . . area of a circle



Weak law of large numbers

Theorem
Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Let
Sn = (X1 + · · ·+Xn)/n be the sample mean. Then for every
ε > 0 we have

lim
n→∞

P (|Sn − µ| > ε) = 0.

We say that sequence Sn converges to µ in probability.



Central Limit Theorem



Central Limit Theorem

Theorem
Let X1, . . . , Xn be i.i.d. with expectation µ and variance σ2. Put
Yn := ((X1 + · · ·+Xn)− nµ)/(

√
n · σ).

Then Yn
d−→ N(0, 1). This means, that if Fn is the cdf of Yn, then

lim
n→∞

Fn(x) = Φ(x) for every x ∈ R.

We say that the sequence Yn converges to N(0, 1) in
distribution.



Moment generating function

Definition
For a random variable X we let

MX(t) = E
(
etX
)
.

Function MX(t) is called the moment generating function.

I MBern(p)(t) = p · et + (1− p).
I MX(t) =

∑∞
n=0 E

(
Xn
)
tn

n! .
I MX+Y (t) = MX(t)MY (t), jsou-li X, Y n.n.v.
I MBin(n,p) = (pet + 1− p)n

I MN(0,1) = et
2/2

I MExp(λ) = 1
1−t/λ

I If MX(t) = MY (t) on (−a, a) for some a > 0, then X = Y
a.s.
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