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Overview

Continuous random vectors



What we know

> joint cdf
Fxy(z,y) =P(X <z&Y <y).

» joint pdf: fxy > 0 such that

Fxy(z,y) = / / Fx.y (s, t)dtds.

» important example: multivariate normal distribution
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Conditioning

Definition (restricting a r.v. to a subset)
Xisarv.on(Q,F,P),Be F,s.t P(B)>0.

Fyip(x) = P(X <z | B)

fx|B Is the corresponding pdf.
» if B={X € S}, then

fx(@)
fX|B(33) _ {P())((ES) ifrels

0 otherwise




Total cdf & pdf

Theorem (total cdf, total pdf)

Let X be a continuous r.v., let By, Bs, ..

Then
Z P(By)Fxp, (x
ZP i) Ix|B; (%

Proof: law of total probability.

. be a patrtition of ().

and



Marginal pdf

Theorem

fx(z) = /GR fxy(z,y)dy
Yy

fy(y) = /eR fxy(z,y)dx



Conditional pdf

Definition
For continuous r.v. X, Y we define their conditional pdf by

 fxy(z,y)

when fy (y) > 0, otherwise we do not define it.

> recall that fy (y) = [, g fx.v (2, y)dx
» for a fixed y the function z — fxy (z|y) is a pdf



Conditional, joint and marginal pdf

Theorem

fxy(z,y) = fy () fxy(zly)
fx(@) = / Py ) Fxiy (ely)dy



Sum of continuous r.v.

Theorem

Let X, Y be independent random variables. Then Z = X +Y is

also a continuous r.v. and its pdf is a convolution of fx, fy.
That is,

f2(2) = /_ Y @) fy (= — 2)da.



Example of a convolution



Conditional density and expectation
> E(X|B) = [" = fxp(z)dx
> E(g(X)|B) = |7 9(x)fxp(x)dx

Theorem (total expectation)
Let X be a continuous r.v. If B1, B, ... is a partition of ), then

ZP E(X | B;).

Proof: by total pdf.



Conditional pdf and expectation

> fxy(zly) == f (( j is a pdf of X, givenY =y

> E(X|Y =y):= [T x- fxyy(z,y)dz is the expectation of
this r.v.

> E(g(X)|Y =y) = [* g(x) - fxpy(z,y)da

v

An analogy of the law of total expectation:

E(X) = /oo E(X |Y =y)fr(y)dy

— 00

> E(X)=EE(X|Y))



Overview

Covariance and correlation



Covariance

Definition
Forr.v.'s X,Y we define their covariance by formula

cov(X,Y) = E((X —EX)(Y —EY)).

Theorem

cou(X,Y) =E(XY) - E(X)E(Y)

» var(X) = cov(X, X)

» cov(X,aY +bZ +c¢) =acov(X,Y)+beov(X, Z)
> cov(X,Y)=0if X,Y are independent

» but not only then



Correlation

Definition
Correlation of random variables X, Y is defined by
cov(X,Y
o(X,Y) = £Y)
var(X)var(Y)

» “scaled covariance”

—1 < p(X,Y) <1 (exercise)

» Correlation does not imply causation! (In particular,
correlation is symmetric.)

» OTOH, uncorrelation does not imply independence.
(Extreme case: X anyr.v., Y = +X or Y = —X, both with
the same probability.)

v



Variance of a sum

Theorem
LetX =3%"", X;. Then

var(X) = ZZCOU(Xi,Xj) = Zvar(Xi) + ZCOU(XZ',X]').
i=1

i=1 j=1 i#]

In particular, if X4, ..., X,, are independent, then

var(X) = Zvar(Xi).
i=1



Overview

Inequalities



Cauchy inequality

Theorem
Let X, Y have finite expectation and variance. Then

E(XY) <4/E(X?)E(Y?)

» Corollary for correlation: —1 < p(X,Y) <1



Jensen inequality

Theorem
Let X have finite expectation and let g be a convex real functin.
Then

E(g(X)) = g(E(X)).
(For concave function we have the opposite inequality.)



Markov inequality

Theorem
Suppose X > 0 anda > 0. Then

B(x)

P(X >a) <
(Xza)< =




Chebyshev inequality

Theorem
Let X have finite expectation ;. and variance o2, leta > 0. Then

1
PX —pl 2 a-0) < .



Chernoff inequality

Theorem
Let X =" | X;, where X; are i.i.d. attaining £1 with
probability 1/2. Then fort > 0 we have

P(X <—t)=P(X >t) < e /2

where o = ox = \/n.
Without proof.



Overview

Limit theorems — approximation



Strong law of large numbers

Theorem

Let X1, ..., X, be iid. with expectation u and variance o*. Let
Sp = (X1 4+ -+ X,)/n be the sample mean. Then we have

lim S, = p almost surely (i.e. with probability 1).

n—oo

We say that sequence S,, converges to u almost surely.



Monte Carlo integration

How to compute [ _, g(z)dz?
In particular

1 forzesS
g(x) =

0 otherwise

. area of a circle



Weak law of large numbers

Theorem

Let X1, ..., X, be iid. with expectation u and variance o*. Let

Sp = (X1 4+ -+ X,)/n be the sample mean. Then for every
e > 0 we have

lim P(|S, — | > ¢) = 0.

n—oo

We say that sequence S,, converges to u in probability.



Central Limit Theorem



Central Limit Theorem

Theorem

Let X1, ..., X, be i.id. with expectation u and variance o*. Put
Yo o= (X1 4+ Xa) —np)/ (V- o).
ThenY, % N(0,1). This means, that if F, is the cdf of Y,,, then

lim F,(z) = ®(z) foreveryx cR.

n—oo

We say that the sequenceY,, converges to N (0,1) in
distribution.



Moment generating function

Definition
For a random variable X we let

Mx(t) = E(e"Y).
Function Mx (t) is called the moment generating function.

> MBern(p)(t) =Dp- el + (1 - p)'

Mx (t) = S0 E(X7) &

Mx vy (t) = Mx (t) My (t), jsou-li X, Y n.n.v.
MBin(n,p) = (pet +1- p)n

My, = et’/?

_1
= 1-t/x

>
>
>
>
>
» If Mx(t) = My(t) on (—a,a) forsome a > 0,then X =Y
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