5. Let Φ be a Poisson point process with the intensity measure Λ. Determine the covariance $\operatorname{cov}\left(\Phi\left(B_{1}\right), \Phi\left(B_{2}\right)\right)$ for $B_{1}, B_{2} \in \mathcal{B}$.
B_{1}, B_{2} may not be disjoint!

$$
\Phi\left(B_{1}\right)=\Phi\left(B_{1}, B_{2}\right)+\Phi\left(B_{1} \cap B\right.
$$

$\Phi\left(B_{1}\right) \sim P_{0}\left(\wedge\left(B_{t}\right)\right)$
$\Phi\left(B_{2}\right) \sim P_{0}\left(\wedge\left(B_{2}\right)\right)$
$\operatorname{cov}\left(\Phi\left(B_{1}\right), \Phi\left(B_{2}\right)\right)=\frac{B_{1}, B_{2}=\phi}{B_{1} B_{2} \not B_{2} \neq \varnothing}=\cdots$
$\ldots=\operatorname{cov}\left(\Phi\left(B_{1}, B_{2}\right)+\Phi\left(B_{1} \neg B_{2}\right), \Phi\left(B_{2} \backslash B_{1}\right)+\Phi\left(B_{1} \cap B_{2}\right)\right)=$
$=\operatorname{cov}\left(\underline{\Phi}\left(B_{1}, B_{2}\right), \Phi\left(B_{2}, B_{1}\right)\right)+\operatorname{cov}\left(\Phi\left(B_{1}, B_{2}\right), \Phi\left(B_{1} \cap B_{2}\right)\right) r$
$+\cos \left(\Phi\left(B_{1} \cap B_{2}\right) \cdot \Phi\left(B_{2}, B_{1}\right)\right) r \operatorname{cov}\left(\Phi\left(B_{1} \cap B_{2}\right), \Phi\left(B_{1} \cap B_{2}\right)\right)=$

$$
=0+0+0+\underbrace{\operatorname{var} \Phi\left(B_{1} \cap B_{2}\right)}_{\sim P_{0}\left(\Lambda\left(B_{1} \cap B_{2}\right)\right)}=\Lambda\left(B_{1} \cap B_{2}\right)
$$

