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Continuous distributions

Random vectors

Back to the basics



Which distributions we have seen
I U(a, b) – uniform on interval [a, b]

I Exp(λ) – exponential – how long till something happens

I N(µ, σ2) – normal – how much does a bread weigh





Gamma distribution
I Gamma(w, λ), gamma distribution with parameters w > 0

and λ > 0 has PDF

f(x) =

{
0 for x ≤ 0

1
Γ(w)λ

wxw−1e−λx for x ≥ 0

where Γ(w) = (w − 1)! =
∫∞

0 xw−1e−xdx.
I For w = 1 we get exponential distribution again.
I If X1, . . . , Xn are i.i.d with distribution Exp(λ),

then X1 + · · ·+Xn ∼ Gamma(n, λ).
I Models lifetime of an electronic component, total of rainfall

in a year, web-server latency.











A many others
I Beta(s, t) – beta distribution
I χ2 distribution with k degrees of freedom = chi-square (χ2

k)
is an alternative name for Gamma(1

2k,
1
2). It is the

distribution Z2
1 + · · ·+ Z2

k , where Zi ∼ N(0, 1) are i.i.d.
I Student t-distribution
I etc. etc.





Uniform distribution
I R.v. X has a uniform distribution on [a, b], we write
X ∼ U(a, b), if fX(x) = 1/(b− a) for x ∈ [a, b] and
fX(x) = 0 otherwise.





Universality of uniform

Theorem
Let X be a r.v. with CDF FX = F , let F be continuous and
increasing. Then F (X) ∼ U(0, 1).

Theorem
Let F be a function “of CDF-type”: non-decreasing
right-continuous function with limx→−∞ F (x) = 0 and
limx→+∞ F (x) = 1. Let Q be the corresponding quantile
function.
Let U ∼ U(0, 1) and X = Q(U). Then X has CDF F .
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Joint cdf

Definition
For r.v. X, Y on probability space (Ω,F , P ) we define their joint
cdf FX,Y : R2 → [0, 1] by

FX,Y (x, y) = P ({ω ∈ Ω : X(ω) ≤ x&Y (ω) ≤ y}).

I Formal condition: we need {X ≤ x&Y ≤ y} ∈ F ,
otherwise (X,Y ) is not a random vector.

I We can define this also for more than two r.v.:
FX1,...,Xn(x1, . . . , xn) =

I From here we can derive the probability of a rectangle:
P (X ∈ (a, b] &Y ∈ (c, d]) =







































Joint pdf
I Often we can write a joint cdf as an integral of a

nonnegative function fX,Y

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dsdt.

I Then we call r.v. X, Y jointly continuous. Function fX,Y is
their joint pdf.

I As in the one-dimension case we can have fX,Y > 1.
I As in the one-dimension case we can use joint pdf to find

other probabilities for a “reasonable set A”.

P ((X,Y ) ∈ A) =

∫
A
fX,Y (x, y)dxdy.































I fX,Y (x, y) =
∂2FX,Y (x,y)

∂x∂y

I fX,Y (x, y)
.
=

P (x≤X≤x+∆x & y≤Y≤y+∆y)
∆x∆y







LOTUS
I We have a similar formula as for the discrete case:

E
(
g(X,Y

)
) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dxdy.

I And as in the discrete case we conclude:

E
(
aX + bY + c

)
= a · E

(
X
)

+ b · E
(
Y
)

+ c.





Independence of continuous random variables

Definition
We call random variables X, Y independent, if the events
{X ≤ x} and {Y ≤ y} are independent for any x, y ∈ R.
Equivalently,

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y),

FX,Y (x, y) = FX(x)FY (y)

Theorem
Let X, Y have joint pdf fX,Y (and pdf’s fX , fY ). The following
are equivalent:
I X, Y are independent
I fX,Y (x, y) = fX(x)fY (y)







Multidimensional normal distribution
I ϕ(t) = 1√

2π
e−t

2/2

I f(t1, . . . , tn) = ϕ(t1)ϕ(t2) · · ·ϕ(tn) = 1
(
√

2π)n
e−

t21+···+t2n
2

I f(t1, . . . , tn) = (2π)−n/2e−r
2/2, where r2 = t21 + · · ·+ t2n

radially symmetric function

Image by Wikipedia editor Piotrg.

I Let Z = (Z1, . . . , Zn) have a pdf f .
I Z1, . . . , Zn are i.i.d., Zi ∼ N(0, 1)

I Z/‖Z‖ is a uniformly random point on a unit sphere in Rn.
I Thus the inner product of Z with any unit vector is N(0, 1).
I 〈u, Z〉 =

∑n
i=1 uiZi follows N(0, 1)



















General multidimensional normal distribution
I In general we can take a random vector with joint pdf
c · e−Q(t), where c > 0 is an appropriate constant and Q(t)
is a positive definite quadratic function.

I Is used in machine learning.
I Coordinates are not independent!

Image by Wikipedia editor Bscan.





Sum of continuous random variables

Theorem
Suppose X, Y are independent continuous variables. Then
Z = X + Y is a continuous random variable and its pdf is
obtained by a convolution of fX and fY . Explicitly,

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx.



Conditioning

Definition
X is a r.v. on (Ω,F , P ), B ∈ F .

FX|B(x) := P (X ≤ x | B)

The corresponding pdf is denoted by fX|B.

Theorem
Let B1, B2, . . . be a partition of Ω. Then

FX(x) =
∑
i

FX|Bi
P (Bi) and

fX(x) =
∑
i

fX|Bi
P (Bi).

Proof: Theorem on total probability.
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Covariance

Definition
For r.v.’s X, Y we define their covariance by formula

cov(X,Y ) = E
(
(X − EX)(Y − EY )

)
.

Theorem

cov(X,Y ) = E
(
XY

)
− E

(
X
)
E
(
Y
)

I var(X) = cov(X,X)

I cov(X, aY + bZ + c) = a cov(X,Y ) + b cov(X,Z)

I cov(X,Y ) = 0 if X,Y are independent
I but not only then



Correlation

Definition
Correlation of random variables X, Y is defined by

%(X,Y ) =
cov(X,Y )√
var(X) var(Y )

.

I “scaled covariance”
I −1 ≤ %(X,Y ) ≤ 1 (exercise)
I Correlation does not imply causation! (In particular,

correlation is symmetric.)
I OTOH, uncorrelation does not imply independence.

(Extreme case: X any r.v., Y = +X or Y = −X, both with
the same probability.)



Variance of a sum

Theorem
Let X =

∑n
i=1Xi. Then

var(X) =

n∑
i=1

n∑
j=1

cov(Xi, Xj) =

n∑
i=1

var(Xi) +
∑
i 6=j

cov(Xi, Xj).

In particular, if X1, . . . , Xn are independent, then

var(X) =

n∑
i=1

var(Xi).
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