NMFM402 - Mathematics of Non-Life Insurance 2

GLM 5 - confidence intervals

Practical 6

To review the necessary theory for this practicals, you may check the book [2], Chapter 3.2. and lecture notes [1].

Exercise 1:

Consider the Poisson model for claim frequency with logarithmic link function (see 2.3.1. in [1]). Using general MLE theory, construct approximate confidence intervals based on Fisher information for:
(a) parameters β_{l}
(b) multiplicative risk factors $\exp \left(\beta_{l}\right)$
(c) expected number of claims per policy $\mathbb{E} Y_{n}$ in the n-th risk class.

Exercise 2:

Recall Exercise 3 from Practical 5 : Consider the claim amounts ($S_{i, j}$) sorted into the table below according to the risk classes of the two risk factors (vehicle type and driver age).

	$21-30 \mathrm{y}$	$31-40 \mathrm{y}$	$41-50 \mathrm{y}$	$51-60 \mathrm{y}$
passenger car	2000	1800	1500	1600
delivery van	2200	1600	1400	1400
truck	2500	2000	1700	1600

Assume (for simplicity) unit exposure, i.e. number of claims are $v_{i, j}=1$. Consider the GLM model with Inverse Gaussian error distribution and logarithmic link function. Find approximate 95% confidence intervals for
(a) parameters β_{l}
(b) multiplicative risk factors $\exp \left(\beta_{l}\right)$
(c) expected number of claims per policy $\mathbb{E} Y_{n}$ in the n-th risk class.

Reference

[1] L. Mazurová Mathematics of Non-life Insurance 2 - lecture notes.Version March 2021. Available online at Moodle: https://dl1.cuni.cz/pluginfile.php/1162656/mod_resource/content/2/MNP2LectureNotes.pdf
[2] E. Ohlsson, B. Johansson: Non-Life Insurance Pricing with Generalized Linear Models, 15 EAA Lecture Notes, DOI 10.1007/978-3-642-10791-7_2, Springer-Verlag Berlin Heidelberg, 2010

