NMFM402 – Mathematics of Non-Life Insurance 2

GLM 5 - confidence intervals **Practical 6**

To review the necessary theory for this practicals, you may check the book [2], Chapter 3.2. and lecture notes [1].

Exercise 1:

Consider the Poisson model for claim frequency with logarithmic link function (see 2.3.1. in [1]). Using general MLE theory, construct approximate confidence intervals based on Fisher information for:

- (a) parameters β_l
- (b) multiplicative risk factors $\exp(\beta_l)$
- (c) expected number of claims per policy $\mathbb{E}Y_n$ in the *n*-th risk class.

Exercise 2:

Recall Exercise 3 from Practical 5 : Consider the claim amounts $(S_{i,j})$ sorted into the table below according to the risk classes of the two risk factors (vehicle type and driver age).

	21-30y	31-40y	$41-50\mathrm{y}$	51-60y
passenger car	2000	1800	1500	1600
delivery van	2200	1600	1400	1400
truck	2500	2000	1700	1600

Assume (for simplicity) unit exposure, i.e. number of claims are $v_{i,j} = 1$. Consider the GLM model with Inverse Gaussian error distribution and logarithmic link function. Find approximate 95% confidence intervals for

- (a) parameters β_l
- (b) multiplicative risk factors $\exp(\beta_l)$
- (c) expected number of claims per policy $\mathbb{E}Y_n$ in the *n*-th risk class.

Reference

- \mathcal{D} [1] L. Mazurová *Mathematics* ofNon-life Insurance lecture notes. Version March 2021. Available online Moodle: athttps://dl1.cuni.cz/pluginfile.php/1162656/mod resource/content/2/MNP2LectureNotes.pdf
- [2] E. Ohlsson, B. Johansson: Non-Life Insurance Pricing with Generalized Linear Models, 15 EAA Lecture Notes, DOI 10.1007/978-3-642-10791-7_2, Springer-Verlag Berlin Heidelberg, 2010