
Moufang identities

Left and right isotopes. Let Q be a loop, and let e be an element of Q. A full
name for the loop (Q, ∗), x ∗ y = x/e · y, might be the left loop principal isotope
induced by e. For simplicity let this be called a left isotope. Similarly, x∗y = x ·f\y
defines the right isotope induced by f .

Suppose that x ∗ y = x · f\y. What are the left isotopes of (Q, ∗)? Denote
by // the right division in (Q, ∗). Thus x//y = z ⇔ x = z ∗ y ⇔ x = z · f\y
⇔ z = x/(f\y). The operation of the left isotope of (Q, ∗) induced by e thus is
x//e∗y = (x/(f\e)) ·(f\y). If (f, e) runs through Q×Q, then (f\e, e) runs through
Q×Q too. This implies:

(1) The set of left isotopes of right isotopes of Q coincides with the
set of all principal loop isotopes of Q, and
(2) the set of right isotopes of left isotopes of Q also coincides with
the set of all principal loop isotopes of Q.

The statement above was proved under the assumption that Q is a loop. In fact it
holds for every quasigroup Q.

LIP loops. A loop Q is said to possess left inverses if

∀x ∈ Q ∃y ∈ Q such that Ly = L−1
x .

As will be proved, if Q possesses left inverses then

x(1/x · y) = y, 1/x · (xy) = y, x\1 · (xy) = y and x(x\1 · y) = y

for all x, y ∈ Q. On the other hand, if any of these identities holds, then Q
possesses left inverses. To prove the latter is easy since x(1/x · y) = y means that
LxL1/x = idQ, and the other identities may be intepreted similarly.

Let x, y ∈ Q be such that L−1
x = Ly. Then y(xz) = z for all z ∈ Q. Setting

z = 1 yields yx = 1 and y = 1/x. Setting z = x\1 yields y = x\1. The assumption
L−1
x = Ly also means that x(yz) = z for all z ∈ Q. Thus xy = 1, and y = x\1.

Setting z = y\1 gives x = y\1. Hence y = 1/(y\1) = 1/x too.
A loop that possesses left inverses thus fulfils all of the four identities. Therefore

1/x = x\1 for each x ∈ Q. If 1/x = x\1, then the notation x−1 may be used.
Saying that Q ‘possesses left inverses’ refers to the fact that the set {Lx; x ∈ Q}

is closed under the taking of an inverse permutation. A more traditional way of
saying that Q possesses left inverses is to say that Q has the left inverse property
(LIP). Furthermore, instead of saying that Q has the left inverse property it is usual
to say that Q is a LIP loop. As explained above, if Q is a LIP loop, then

∀x, y ∈ Q x · x−1y = x−1 · xy = y.

This may be also expressed as L−1
x = Lx−1 . RIP loops fulfil yx ·x−1 = y = yx−1 ·x.

That means R−1
x = Rx−1 .

Left isotopes and LIP loops. Let (Q, ∗) be a left isotope of a loop Q, say
x ∗ y = x/e · y. For x ∈ Q denote by λx the left translation of (Q, ∗), and by Lx the
left translation of Q. Then λx = Lx/e. Hence

{λx; x ∈ Q} = {Lx; x ∈ Q}.

This implies that Q is a LIP loop (i.e., posseses left inverses) if and only if (Q, ∗)
is a LIP loop. We have proved:

(1) A left isotope of a LIP loop is a LIP loop; and
(2) A right isotope of a RIP loop is a RIP loop.
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Left Bol loops. Let Q be a loop. The following is equivalent:

(1) The set LQ = {Lx; x ∈ Q} is closed under twists (i.e., if α, β ∈ LQ, then
αβα ∈ LQ);

(2) the set LQ = {Lx; x ∈ Q} is closed under inverted twists (i.e., if α, β ∈ LQ,
then αβ−1α ∈ LQ);

(3) if x, y ∈ Q, then LxLyLx = Lx·yx;
(4) each right isotope of Q is a LIP loop;
(5) each isotope of Q is a LIP loop;
(6) Q satisfies the identitity x(y · xz) = (x · yx)z.

Proof. First note that LxLyLx = Lx·yx means that x · (y · xz) = (x · yx)z. Hence
(3) ⇔ (6). If LxLyLx = Lz, then z = Lz(1) = LxLyLx(1) = x · yx. Hence (1) ⇔
(3) ⇔ (6).

If Q satisfies (2) then Q is a LIP loop since L−1
x = L1L

−1
x L1 ∈ LQ. Thus

Lx = L−1
x−1 and LxLyLx = LxL

−1
y−1Lx ∈ LQ, for any x, y ∈ Q. Hence (2) ⇒ (1). To

prove the converse by the same method it suffices to show that the identity of (6)
implies the left inverse property. That follows from setting y = 1/x. Indeed, then
x(1/x · xz) = xz, and so 1/x · xz = z. Therefore (1) ⇒ (2). We have shown that
(1) ⇔ (2) ⇔ (3) ⇔ (6).

Clearly, (5) ⇒ (4). The converse follows from the fact that each loop isotope
of Q is isomorphic to a principal loop isotope, each principal loop isotope is a left
isotope of a right isotope, and each left isotope of a LIP loop is a LIP loop.

To finish it thus suffices to verify (2) ⇔ (4). Consider f ∈ Q and denote by
λx the left translation of (Q, ∗), x ∗ y = x · f\y. Clearly, λx = LxL

−1
f . What

does it mean that the set {LxL−1
f ; x ∈ Q} is closed under inversions? This means

that for each x ∈ Q there exists y ∈ Q such that LxL
−1
f LyL

−1
f = idQ. Hence

L−1
f LxL

−1
f Ly = idQ, L−1

y LfL
−1
x Lf = idQ and Ly = LfL

−1
x Lf . In other words,

(Q, ∗) is a LIP loop if and only if for each x ∈ Q there exists y ∈ Q such that
LfL

−1
x Lf = Ly. This is true for all f ∈ Q if and only if the set LQ is closed under

inverted twists. �

The identity x(y · xz) = (x · yx)z is known as the left Bol law. Loops that fulfil
this law are called left Bol loops of just Bol loops. The right Bol loops are those
that fulfil the right Bol law z(xy · x) = (zx · y)x.

Moufang loops. A loop Q is called Moufang if it is both the left and the right
Bol loop. Moufang loops are thus those loops that satisfy both identities x(y ·xz) =
(x · yx)z and z(xy · x) = (zx · y)x.

The variety of Moufang loops is much bigger than the variety of groups. Never-
theless, Moufang loops are not so far from groups as other loop varieties. This is
well documented by the Moufang’s theorem:

Let Q be a Moufang loop. If x, y, z ∈ Q are such that x ·yz = xy ·z,
then 〈x, y, z〉 is a group.

The theorem of Moufang may be rephrased by saying that associating elements
generate an associating subloop (i.e., a group).

The proof of the theorem is relatively complicated and needs several pages.

Operations in a LIP loop. The left division of a LIP loop is dispensible since
x\y = x−1y for all elements x and y of a LIP loop Q. LIP loops may thus be
considered as algebras in signature (·, /,−1, 1) such that

x · 1 = x = 1 · x, (x−1)−1 = x, x−1 · xy = y and (y/x)x = y = (yx)/x.
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IP loops. A loop Q is said to have the invere property if it is both a LIP loop and
a RIP loop. Loops with inverse property are called IP loops. An IP loop may be
considered as an algebra in signature (·,−1, 1) such that

x · 1 = x = 1 · x, (x−1)−1 = x and x−1 · xy = y = yx · x−1.

Lemma. If x, y ∈ Q and Q is an IP loop, then

(xy)−1 = y−1x−1.

Proof. The statement may be modified to y−1 = (x\y)−1x−1, by writing y as x\y.
Now,

y−1 = (x\y)−1x−1 ⇔ y−1x = (x\y)−1 ⇔ x = y(x\y)−1

⇔ x · (x\y) = y ⇔ y = y.

�

IP Bol loops are Moufang. A left Bol loop Q is a LIP loop. A right Bol loop is
a RIP loop. A Moufang loop is hence an IP loop. The statement to prove is:

Lemma. A RIP left Bol loop is Moufang.

Proof. In a left Bol loop x(y · xz) = (x · yx)z. If such loop is an IP loop, then

(x(y · xz))−1 = (z−1x−1 · y−1)x−1 and ((x · yx)z)−1 = z−1(x−1y−1 · x−1),

yielding thus the right Bol law. �

Flexibility and the Moufang law. The flexible law is the identity x ·yx = xy ·x.
Note that a loop Q is flexible if and only if LxRx = RxLx for all x ∈ Q.

Lemma. A loop Q is Moufang if and only if Q is a flexible Bol loop.

Proof. Let Q be a Moufang loop. Then Q is an IP loop such that x·(y·xz) = (x·yx)z
for all x, y, z ∈ Q. Setting z = x−1 yields xy = (x ·yx)x−1. Therefore xy ·x = x ·yx.

Let Q be a left Bol loop that is flexible. It is enough to verify that Q is a RIP
loop. The flexibility induces the identity x · (y · xz) = (xy · x)z. Setting z = x−1

yields xy = (xy · x)x−1. �

Two Moufang identities. Let Q be a loop. The following is equivalent:

(1) Q is Moufang;
(2) Q fulfils x(y · xz) = (xy · x)z;
(3) Q fulfils z(x · yx) = (zx · y)x;
(4) (RxLx, L

−1
x , Lx) ∈ Atp(Q) for all x ∈ Q; and

(5) (R−1
x , LxRx, Rx) ∈ Atp(Q) for all x ∈ Q.

Proof. Setting z = 1 yields the flexible law in both of the identities above. The
flexible law changes them into a Bol identity. Flexible Bol loops are Moufang. It
remains to observe that

x(y · xz) = (xy · x)z ⇔ Lx(yz) = x · yz = (xy · x)(x\z) = RxLx(y) · L−1
x (z);

z(x · yx) = (zx · y)x ⇔ R−1
x (z) · LxRx(y) = (z/x)(x · yx) = zy · x = Rx(zy).

�

Autotopisms describing Bol loops. The left Bol loop identity may be expressed
as x · yz = (x · yx)(x\z). Hence

Q is left Bol ⇔ (LxRx, L
−1
x , Lx) ∈ Atp(Q) for all x ∈ Q;

Q is right Bol ⇔ (R−1
x , RxLx, Rx) ∈ Atp(Q) for all x ∈ Q.
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Switching translations. Let Q be an IP loop. Denote the operation of the inverse
as a mapping I. Thus I(x) = x−1 for each x ∈ Q. Then

IRxI = L−1
x and ILxI = R−1

x for every x ∈ Q.

Proof. If x, y ∈ Q, then IRxI(y) = I(y−1x) = (y−1x)−1 = x−1y = L−1
x (y). �

Switching components of an isotopism. Suppose that Q is an IP loop and that
α, β, γ ∈ Sym(Q). If (α, β, γ) ∈ Atp(Q), then (γ, IβI, α) ∈ Atp(Q).

Proof. The assumption is that α(x)β(y) = γ(xy) for all x, y ∈ Q. This can be
expressed as α(x) = γ(xy)(β(y))−1 = γ(xy) · Iβ(y). Replacing x with xy−1 yields

α(xI(y)) = γ(x) · Iβ(y). Thus α(xy) = γ(x) · IβI(y).

�

The third Moufang identity. A loop Q fulfils the identity

xy · zx = x(yz · x) ⇔ (Lx, Rx, LxRx) ∈ Atp(Q) for each x ∈ Q.
Each such loop is a flexible IP loop.

Proof. To get the RIP set z = 1/x. Then xy = x((y ·1/x)x), and thus y = (y ·1/x)x
for all x, y ∈ Q. To get flexibility set z = 1. The flexibility implies that the identity
is equivalent to its mirror image xy · zx = (x · yz)x. That yields the LIP. �

The equivalence of Moufang identities. Let Q be a loop. Each of the following
identities is equivalent to Q being Moufang:

x(y · xz) = (xy · x)z, (lM)

(zx · y)x = z(x · yx), (rM)

xy · zx = x(yz · x), and (mMl)

xy · zx = (x · yz)x. (mMr)

Proof. We already know that (lM) = (rM). By flexibility, (mMl) = (mMr). Com-
posing autotopism expressions of (lBol) and (rM) implies that

(LxRx, L
−1
x , Lx) (R−1

x , LxRx, Rx) = (Lx, Rx, LxRx) ∈ Atp(Q)

in every Moufang loop Q. Thus (lM) ⇒ (mM). To get the converse implica-
tion note that switching components of (Lx, Rx, LxRx) yields (LxRx, IRxI, Lx) =
(RxLx, L

−1
x , Lx) since loops fulfilling (mM) are flexible IP loops. �

Description of nuclei. Similar technique may be used to prove that in a Moufang
loop Nλ(Q) = Nρ(Q) = Nµ(Q). Recall that if Q is a loop, then

Nλ(Q) = {a ∈ Q; a · xy = ax · y for all x, y ∈ Q};
Nµ(Q) = {a ∈ Q; x · ay = xa · y for all x, y ∈ Q}; and

Nρ(Q) = {a ∈ Q; x · ya = xy · a for all x, y ∈ Q}.
It is clear that

a ∈ Nλ(Q) ⇔ (La, idQ, La) ∈ Atp(Q), and

a ∈ Nρ(Q) ⇔ (idQ, Ra, Ra) ∈ Atp(Q).

Middle nucleus and translations. Let Q be a loop. Then

a ∈ Nµ(Q) ⇔ (Ra, L
−1
a , idQ) ∈ Atp(Q) ⇔ (R−1

a , La, idQ) ∈ Atp(Q).

Proof. Indeed, x · ay = xa · y holds for all x, y ∈ Q if and only if xy = xa · a\y or,
alternatively, x/a · ay = xy, for all x, y ∈ Q. �
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Nuclei in Bol loops and Moufang loops.

(1) Let Q be left Bol. Then Nλ(Q) = Nµ(Q).
(2) Let Q be right Bol. Then Nρ(Q) = Nµ(Q).
(3) Let Q be Moufang. Then Nλ(Q) = Nµ(Q) = Nρ(Q).

Proof. It suffices to verify the first claim. Recall that in every left Bol loop
(LxRx, L

−1
x , Lx) ∈ Atp(Q), for every x ∈ Q. The equality

(L−1
a , idQ, L

−1
a ) (LaRa, L

−1
a , La) = (Ra, L

−1
a , idQ)

thus implies that (La, idQ, La) ∈ Atp(Q) if and only if (Ra, L
−1
a , idQ) ∈ Atp(Q). �

The left and right alternative laws. These are the laws x · xz = xx · z and
zx · x = z · xx, respectively. Loops satisfying these laws are said to have the left or
right alternative property. The loops themselves are then known as LAP and RAP
loops.

The left Bol law x(y · xz) = (x · yx)z yields the left alternative law by setting
y = 1. Left Bol loops are thus LAP loops, while right Bol loops are RAP loops.

Exercise. A loop Q is a left Bol loop if and only if each loop isotope of Q fulfils
the LAP. A loop Q is a right Bol loop if and only if each loop isotope of Q fulfils
the RAP.

Power associativity. A loop Q is said to be left power associative if it is LIP and
fulfils

LxiLxj (y) = Li+jx (y) for all x, y ∈ Q and all i, j ∈ Z.

The left power associativity may be paraphrased by saying that terms of the
form

x±1x±1 · · ·x±1y

are independent of bracketing.
It may be proved that left Bol loops are left power associative. The proof is not

difficult.

Diassociativity. A loop Q is said to be diassociative if the subloop 〈x, y〉 is asso-
ciative (and thus a group) for any choice x, y ∈ Q.

Moufang loops are diassociative. This follows, e.g., from flexibility and Mo-
ufang’s theorem. There exist direct proofs of diassociativity in Moufang loops.
However, they are not much simpler than the proof of the Moufang’s theorem.


