7. For $0<a<b<c$ let us consider the sets $K_{1}=\{0, a, a+b, a+b+c\}$ and $K_{2}=\{0, a, a+c, a+b+c\}$. Let X_{0} be a random variable with the uniform distribution on the interval $[0, a+b+c]$. We define simple point processes Φ_{1} and Φ_{2} on \mathbb{R} such that $\operatorname{supp} \Phi_{i}=\left\{x \in \mathbb{R}: x=X_{0}+y+z(a+b+c), y \in K_{i}, z \in \mathbb{Z}\right\}, i=1,2$. Show that $\mathbb{P}\left(\Phi_{1}(I)=0\right)=\mathbb{P}\left(\Phi_{2}(I)=0\right)$ for every interval $I \subseteq \mathbb{R}$ but the distributions of Φ_{1} and Φ_{2} are different.

I) $\mathbb{P}\left(\Phi_{1}(I)=0\right)=$? I interval with length $|I|$

$$
\begin{aligned}
& \quad \stackrel{\mathbb{L}}{ }(|I|<u) \cdot \frac{1}{a+b+a} \cdot\left((a-|I|)^{+}+(b-|I|)^{+}+\left(c-||\bar{I}|)^{+}\right)\right. \\
& \mathbb{P}\left(\Phi_{2}(\bar{I})=0\right)=
\end{aligned}
$$

II) $\mathbb{P}\left(\Phi_{1}(A)=0\right) \neq \mathbb{P}\left(\Phi_{2}(A)=0\right)$ for some $A \in B(\mathbb{R})$

$$
A=[\varepsilon, a-\varepsilon] \cup[a+\varepsilon, a+b-\varepsilon] \cup[a+b+\varepsilon, a+b+c-\varepsilon], 0 \varepsilon \varepsilon<\frac{1}{2}
$$

A:

$$
\begin{aligned}
& \mathbb{P}\left(\Phi_{2}(A)=0\right)=0 \\
& \mathbb{P}\left(\Phi_{1}(A)=0\right)=\frac{1}{a+b+c} \cdot(\varepsilon+\varepsilon)>0
\end{aligned} \quad \text { starting points of } A \text { in }(0, \varepsilon) .
$$

$l>$ starting points of A in ($a+b$
simple point processes ...all atoms have weight 1 (or X_{0} in

