NMAI059 Probability and statistics 1 Class 7

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Continuous random variables

Particular continuous distributions and their parameters

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

General and continuous random variable – what we have learned

- ▶ R.v. is a mapping $X : \Omega \to \mathbb{R}$, that for every $x \in \mathbb{R}$ satisfies $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$
- Discrete r.v. is a r.v.
- CDF of a r.v. X is a function $F_X(x) := P(X \le x)$.
- CDF F_X is nondecreasing right-continuous function with limits in ± 1 equal to 0/1.

- A continuous r.v. has a PDF $f_X \ge 0$ such that $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$.
- ▶ $P(a \le X \le b) = \int_a^b f_X(t) dt$ for every $a, b \in \mathbb{R}$.
- ▶ $P(X \in A) = \int_A f_X(t) dt$ for a "reasonable set A".

Expectation of a continuous r.v.

Definition

Consider a continuous r.v. X with PDF f_X . Then its expectation (expected value, mean) is denoted by $\mathbb{E}(X)$ and defined by

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \ f_X(x) dx,$$

whenever the integral is defined; that is unless it is of type $\infty-\infty.$

An analogy with computing a center of mass of a pole from a formula for its density.

(日) (日) (日) (日) (日) (日) (日)

Discretization.

Properties of expectation

Theorem (LOTUS)

Consider a continuous r.v. X with density f_X and a real function g. Then we have

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$

whenever the integral is defined. (We skip the proof.)

Theorem (Linearity of expectation)

For X_1, \ldots, X_n discrete or continuous random variables we have

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$$

(Proof later.)

Variance of a continuous r.v.

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$

Writing $\mu = \mathbb{E}(X)$, we have

$$var(X) := \mathbb{E}((X - \mu)^2) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx.$$

Theorem

For continuous random variables we have the same formula as for discrete ones, $var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

(Proof is the same as for discrete r.v.)

Variance of a sum

Theorem (Variance of a sum) For X_1, \ldots, X_n independent discrete or continuous r.v. we have

$$var(X_1 + \dots + X_n) = var(X_1) + \dots + var(X_n).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Overview

Continuous random variables

Particular continuous distributions and their parameters

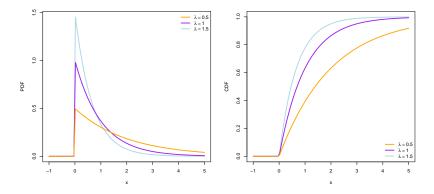
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Uniform distribution

▶ R.v. *X* has a uniform distribution on [a, b], we write $X \sim U(a, b)$, if $f_X(x) = 1/(b-a)$ for $x \in [a, b]$ and $f_X(x) = 0$ otherwise.

Exponential distribution $Exp(\lambda)$ with rate λ

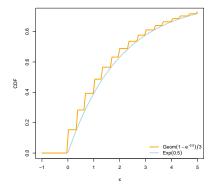
$$F_X(x) = \begin{cases} 0 & \text{for } x \le 0\\ 1 - e^{-\lambda x} & \text{for } x \ge 0 \end{cases}$$



X models time before next phone call in a call-center / web-server response / time till another lightning in a storm / ... Relating $Exp(\lambda)$ and Geom(p)

•
$$P(X > x) = e^{-\lambda x}$$
 for $x > 0$

•
$$P(Y > n) = (1 - p)^n$$
 for $n \in \mathbb{N}$



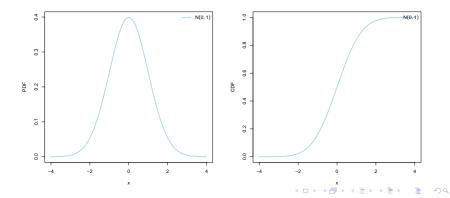
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Standard normal distribution

$$\blacktriangleright \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

- $\Phi(x)$ antiderivative of φ
- Standard normal distribution N(0,1) has PDF φ and CDF Φ .

• If
$$Z \sim N(0, 1)$$
, then $\mathbb{E}(Z) = 0$, $var(Z) = 1$.



General normal distribution

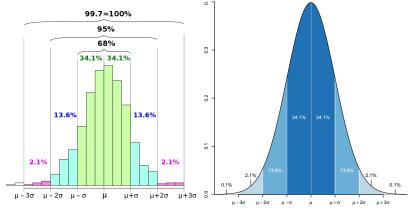
- For $\mu, \sigma \in \mathbb{R}$, $\sigma > 0$ we put $X = \mu + \sigma \cdot Z$, where $Z \sim N(0, 1)$.
- ▶ We write $X \sim N(\mu, \sigma^2)$ general normal distribution

• Normal distribution $N(\mu, \sigma^2)$ has density $\frac{1}{\sigma}\varphi(\frac{x-\mu}{\sigma})$.

Resistance to a sum

Normal distribution - key properties

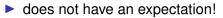
- 68–95–99.7 rule (3σ rule)
- Central limit theorem

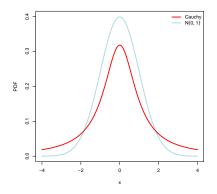


(Image on the left is from Wikipedia, author Melikamp.)

Cauchy distribution

• Cauchy distribution: PDF $f(x) = \frac{1}{\pi(1+x^2)}$





Gamma distribution

 Gamma(w, λ), gamma distribution with parameters w > 0 and λ > 0 has PDF

$$f(x) = \begin{cases} 0 & \text{pro } x \le 0\\ \frac{1}{\Gamma(w)} \lambda^w x^{w-1} e^{-\lambda x} & \text{pro } x \ge 0 \end{cases}$$

where $\Gamma(w) = (w - 1)! = \int_0^\infty x^{w-1} e^{-x} dx.$

- For w = 1 we get exponential distribution again.
- If X₁,..., X_n are i.i.d with distribution Exp(λ), then X₁ + ··· + X_n ~ Gamma(n, λ).
- Models lifetime of an electronic component, total of rainfall in a year, web-server latency.

A many others

- ▶ Beta(s, t) beta distribution

(日) (日) (日) (日) (日) (日) (日)

- Student t-distribution
- etc. etc.

Uniform distribution

▶ R.v. *X* has a uniform distribution on [a, b], we write $X \sim U(a, b)$, if $f_X(x) = 1/(b-a)$ for $x \in [a, b]$ and $f_X(x) = 0$ otherwise.

Universality of uniform

Theorem

Let *X* be a r.v. with CDF $F_X = F$, let *F* be continuous and increasing. Then $F(X) \sim U(0, 1)$.

Theorem

Let *F* be a function "of CDF-type": nondecreasing right-continuous function with $\lim_{x\to-\infty} F(x) = 0$ a $\lim_{x\to+\infty} F(x) = 1$. Let *Q* be the corresponding quantile function.

Let $U \sim U(0,1)$ and X = Q(U). Then X has CDF F.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼