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E. EDWARDS CURVES

An elliptic curve over a field K is a projective curve E such that the function
field K(F) is of genus 1, and E contains at least one K-rational point. The curve
E is often considered in its affine version. This is particularly true if the curve is
smooth and there is only one point at infinity.

For each elliptic curve there exists a smooth Weierstra3 curve C' such that
K(E) = K(C). For each elliptic curve it is possible to define a group operation
@. The group is then denoted by E(K). If K(F) = K(C), then E(K) = C(K).
Are there any reasons why there should be considered other elliptic curves but the
smooth Weierstrafl curves? One reason may be computational, and this is why
Montgomery curves have been considered. Another reason may be structural. In
cryptographic applications the fact that doubling and adding proceeds differently
makes an implementation vulnerable to side channel attacks. We would like to have
an elliptic curve with only one formula for both doubling of a point, and addition
of two distinct points. Such a formula is sometimes known as a closed formula or
a uniform formula.

Edwards curves fulfil such a requirement. Some of the Edwards curves have no
K-rational point at infinity, and these are those for which a closed formula can be
used indiscriminately. This is also true for the so called twisted Edwards curves,
which is a somewhat more general notion. Twisted Edwards curves correspond to
Montgomery curves. Assume char(K) # 2. Then for each twisted Edwards curve
E there exists a smooth Montgomery curve M such that M(K) = E(K), and vice
versa.

To define the group E(K), E an elliptic curve, in full generality, the notion of a
place is needed. Elements of F(K) are places of degree one. If o« € E is a smooth
point, then there is only one place at «. However, if « is a singular point, then
there are either more places at «, or there is a place of degree > 1. That makes
the connection between K-rational projective points of E and elements of E(K) a
bit more complicated. If E is a twisted Edwards curve, then all affine points are
smooth and all points at infinity are singular. If all places induced by K-rational
points at infinity are of degree > 1, then each element of F(K) can be represented
by exactly one affine point. Thus in this case E(K) may be constructed directly
upon the set of all affine K-rational points. In the general case the affine points
may be also used, but their set has to be extended by two or four extra elements
that correspond to “places at infinity”. There are several ways how to do that
formally, and some of them have computational consequences. These are discussed
below.

E.1. Branches and the definition. Consider a curve described by equation
v+ 2 =1+ da’y? (E.1)

that is defined over real numbers. There are good reasons to expect that the corre-
sponding projective curve will have one or two components of connectivity, each of
them closed, similarly as in the case of Weierstrafy curves. However, the number of
connectivity components of an affine curve may be bigger than the number of com-
ponents of its projective completion. (Think about a hyperbole which has only one
component in projective coordinates, but two in affine coordinates.) For a while,
for the sake of simplicity of expression, call an affine component of connectivity a
branch. Denote the curve by E.

Suppose first that d = s? and s > 1. When (E.1) is written in the form y? =
(1 —22)/(1 — s%2?), then it is easy to deduce that in this case there exists exactly
one branch which satisfies y > 0 and € (—s~1,s7!). This branch has a shape
of the letter U, with 2 = —s~! and # = s~! being tangents at infinity, and (0,1)
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being the bottom point. By turning the branch bottom up, i.e. by reflecting it
along the axis z (the line y = 0), we obtain another branch. This branch satisfies
y <0and x € (—s~ !, s71). Since the definition of the curve is <+ y symmetric,
the other two branches are obtained by right angle rotation of the branches that
have been already described. So there are four branches, none of which is closed.
Extreme points of these branches are (0,1), (0,—1), (1,0) and (—1,0). Note that
these points belong to E for any field K and any element d € K.

At this point the reader might wish to guess the number of points at infinity
without actually computing them.

If 0 < s <1 and d = s2, then there are five branches, and the central branch is
closed.

If d < 0, then any point («, 3) € E fulfils |a| < 1 since 82 = (1 — a?)/(1 — da?)
and 1 — da? > 1 for every a. Similarly, |3] < 1. In this case there is only one
branch. The branch is closed and resembles a somewhat smoothed star from the
logo of an Orion chocolate bar. Note that if d = 0, then the curve coincides with a
circle. With decreasing d, the circle gets more and more pressed crosswise towards
the centre (the pressure comes along the quadrangle axes).

Consider now the projective curve induced by (E.1), for any field K, char(K) # 2.
The equation is Y222 + X?22? = Z* + dX?Y?. Assume d # 0. If Z = 0, then
dX?Y? = 0. There are thus two points at infinity, (0:1:0) and (1:0: 0). Both
of them are singular. If K = R and d = s2 > 1, then the two affine branches with
x € (—s71,s) make one projective branch in the shape of the digit 8. The point of
crossing is equal to the projective point (0 : 1 : 0). There are two distinct places
of degree 1 at this point. Think about the point as if consisting of two “ideal”
points. Separating them “resolves the singularity” and changes the shape of 8 into
a (topological) circle. If 1 > d = s? > 0, then the situation is similar but somewhat
different since there is a central closed affine branch. The other four affine branches
form a single projective branch the shape of which can be represented by two circles
that intersect in two points. The points of crossing are (1 : 0 :0) and (0: 1 :0).
Singularities can be resolved in a similar manner, and that makes this projective
branch a topological circle too.

If d < 0, then each place of degree one of K (E) corresponds to a (unique) affine
point. In fact, this is true for any field K, char(K) # 2, when d is not a square.
How does this relate to the fact that the projective curve contains K-rational points
(1:0:0)and (0:1:0) in this case too? The answer is that at each of these points
there sits a single place, and this place is not of degree one, but of degree two.
These points thus do not influence the structure of the group E(K). Of course, the
situation changes if the same curve is considered over the field K[v/d).

An FEdwards curve over K, char(K) # 2, is any curve given by (E.1), with
d ¢ {0,1}. A twisted Edwards curve over K, char(K) # 2 is a curve given by

az? +y? = 1+ dz*y?, where a,d € K* and a # d. (E.2)

Usage of the adjective “twisted” indicates that the class of twisted Edwards curves
extends the class of Edwards curves only modestly. To see this note that if a = b2,
then (bx)? + 32 = 1+ db~2(bx)?y%. A twisted Edwards curve with parameters
(b2,d) is K-equivalent to the Edwards curve given by z? + y? = 1 + db—22%y>.
More generally, there is a K-equivalence between parameters (b*c,d) and (¢, b=2d).
To cover the class of twisted Edwards curves over a finite field F,, ¢ odd, it is
thus enough to consider the Edwards curves, and the curves given by Y22 4 y? =
1+ dz?y?, where ¥ is a preselected nonsquare.

Let us now verify that the polynomial az? + 23 — 1 — da?23 € Klzy, 20 is
absolutely irreducible if a,d € K* and a # d. Up to now we have tacitly assumed
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that this is true. If it have not been true, we could not have had considered the
function field K (E) since this assumes that the polynomial defining F is irreducible.

Proposition E.1. Let K be a field, char(K) # 2. Assume that a1,as,d € K*.
The polynomial f(x1,12) = a12? + asxd — 1 — da?x3 is absolutely irreducible if and
only if d # aqas.

Proof. If d = ajag, then f = (@123 — 1)(1 — agx3). Let f = g1g2, where g1,92 €
Klz1,2o]. If deg, (91) = deg,,(91) = 2, then g» € K*. Assume that g1,g92 ¢ K*.
Suppose first that g; = c;z2 + Biz; + v € Klxi], i € {1,2}. In the polynomial
f(x1,x2) the coefficients at both x%xg and xlxg vanish. We have ajas = —d # 0.
Hence both #; and B2 must vanish too. Now, f = gi1g2 = ajasr3w3 + a1ye1? +
aoy123+7172. Therefore 172 = —1, a2 = a1, aey1 = az and —d = —a1 717200 =
—Qa109.

Assume d # ajaz. We have shown that there cannot be deg,, (g;) € {0,2} for
all 4, j € {1,2}. Hence there exists i € {1,2} such that deg, (g91) = deg,,(g92) = 1.
Because of the x1 <> x2 symmetry it may be assumed that ¢ = 1. This means that
the polynomial f splits over the field of rational functions K (z3) when regarded
as a quadratic polynomial in one variable z;. This can happen if and only if the
discriminant —4a; (agx3 — 1)(1 — day '23) is a square in K[zp]. If it is a square,
then all of the roots have to have an even multiplicity. This is not possible since
the polynomials agxg —land 11— daflxg have no common root because d # ajas
is assumed, and none of them has a double root because char(K) # 2. ]

Lemma E.2. Let K be a field, char(K) # 2. Assume that a1,az,d € K*, d # ajay
and f(x1,x2) = a12? +agw3 —1—da?z3. Let a1, as € K be such that f(ag,as) = 0.
Then (0f J0x;) (a1, a2) # 0O for at least one i € {1,2}.

Proof. First note that df/0x; = 2x;(a; — da:?), where 4,5 € {1,2} and j # i.
If a; = 0, then a3 = a5’ # 0 and (9f/0x2)(0,a3) = 20a0a; # 0. Suppose
that a; # 0 and (9f/0x;)(a1,a2) = 0 for both i € {1,2}. Then af = asd™?,
Oég = ald*I and f(Oél, 042) = alagd*I +a1a2d*1 -1 7&10,2(171 = dil(alag 7d) # 0,
a contradiction. ]

Corollary E.3. Let K be a field with char(K) # 2. Any twisted Fdwards curve
over K is smooth at every of its affine points.

If E is an elliptic curve over K, then any of its K-rational points may be chosen
as the neutral element of E(K). The choice is a matter of convention and is made
so that the addition formula is as simple as possible. For twisted Edwards curves
the neutral element has been chosen to be equal to (0,1). The closed formula for
addition is

(E.3)

(o1, 0) & (B, B2) = ( 12 +aefi axfe —aaqf ) |

1+ doajasfifBe’ 1 —dajasfifa

This formula works for any two affine points provided dajasfBi8e # +1. If the
latter condition is not satisfied, then the result is one of the places of infinity.
Their number can be expressed as 2(e; + €2), where 1,65 € {0,1} is defined so
that €1 = 1 if d is a square, and €5 = 1 if ad~"' is square. Each of the places at
infinity is an element of F(K) that is either of order 2, or of order 4. Applications
in cryptography are mainly concerned with points P € E(K) that are of large
prime order. For these applications computation rules involving places at infinity
are thus not needed. However, for other applications, like factorization algorithms,
these formulas have to be established. This will be discussed later.
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E.2. Birational equivalence. Let C' = Vy, f € K[z, x5] irreducible. Recall
that K(C) can be interpreted as a set of partial mappings p: C' — K that can be
represented by rational mappings a(z1,z2)/b(x1,22), b ¢ (f). Iif @« € C and b(a) #
0, then p(a) = a(a)/b(«). Recall also that ay/b1,a2/bs € K(x1,z2), b1,ba & (f),
represent the same p € K (C) if and only if a1b2 —agby € (f), L.e., if (a1 +(f))/ (b1 +
(f)) and (a2 + (f))/(b2 + (f)) denote the same element of K(C). The partial
mapping p is defined at o € C' whenever there exists a representative a/b such that
b(c) # 0. There are only finitely many « € C at which p(«) is not defined. This
is because if a/b represents p, b ¢ (f), then there are only finitely many a € C
such that b(a) = 0. We say that p is defined nearly everywhere. This is meant as
a synonym to up to finitely many elements (or points). Use Dom(p) to denote the
domain of p, i.e. the set of elements where p is defined.

Let C1 = Vy, and Cy = Vy,, where fi, fo € K[x1, x| are irreducible. A pair
p = (p1,p2) € K(C)? is said to be a rational map Cy — Csq if (p1(a), p2(a)) € Co
whenever o € Dom(p) = Dom(p;)NDom(pz). The curves Cy and Cy are birationally
equivalent (over K) if there exist rational maps p: C; — Cs and o: Cy — C; such
that op(a) = a for nearly all « € Cy and po(B8) = 8 for nearly all 5 € Cy (an
equivalent condition: op(a) = a whenever a € Dom(p) N p~!(Dom(o)), similarly
for ).

If p: C1 — C5 and o: Cy — (] yield a birational equivalence, then there exist
mutually inverse K-isomorphisms o*: K(Ci) = K(Cs) and p*: K(C2) = K(C1)
such that z; + (f1) — o; and x; + (f2) — p;. In fact, K(C1) and K(Cs3) are
K-isomorphic if and only if C1 and Cy are birationally equivalent over K.

To see that a birational equivalence induces mutually inverse isomorphisms of
function fields is not too difficult. Nevertheless it is technically somewhat demand-
ing. For a reader who would like to verify the statement the following comments
may be useful. If 7 € K(C1), then o*(7) = o*(7(x1 + (f1), 22+ (f1))) = 7(c* (x1 +
(f1)), 0" (22 + (f1))) = 7(01,02). Hence o*(7)(8) = 7(01(8),02(8)) = To(B)
for every 8 € Cy. Since o*p*(z; + (f2)) = o*(pi) we get o*p*(x1 + (f2))(8) =
a*(p1)(B) = p1o(B). Now po(8) = (p1o(B), p20(B)) is assumed to be equal to
B = (61, B2) nearly everywhere. Hence p1o(8) = 1 nearly everywhere, and there-
fore o*p*(x1 4 (f2)) = 0" (p1) = #1 + (f2). Similarly, o*p* (22 + (f2)) = 22 + (f2),
and hence 0*p* = idg(c,). The equality p*o* = idg (c,) follows in the same way.

If C; and Cy are birationally equivalent elliptic curves, then Cq(K) = Cy(K).
This is because the structure of the abelian group C;(K) fully depends upon the
structure of the function field K (C;). If the fields are isomorphic, then the groups
are isomorphic too.

Recall that equations fi(z1,22) = 0 and fa(x1,22) = 0 are said to be K-
equivalent if the polynomials can be obtained one from another by a linear substi-
tution. Such substitutions induce a birational equivalence between C; and C5 that
is realized by affine mappings, i.e. by a linear change of coordinates, like in the case
of Weierstrafl and Montgomery curves. However, not every birational equivalence is
affine. Below we shall observe that twisted Edwards curves are birationally equiva-
lent to Montgomery curves. The advantage of invertible affine (or linear) mappings
is that they are defined globally for all « € A? = K x K, and their inversions are
affine (linear) too. The birational equivalence may be thus obtained by restricting
a global mapping to curves.

A linear fractional mapping x — (azx +c)/(bx +d), ad — bc # 0, nearly permutes
an affine line (it may be extended to a permutation of the projective line by co —
a/b and —d/b — o0). Linear fractional mappings thus may serve as a tool to
define transformations of A? that are very close to permutations. One of such
transformations is used to associate Montgomery and Edwards curves:
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Lemma E.4. Assume char(K) # 2. Then ¥ : 8 — (8+1)/(8 — 1) permutes the
set K/ = K\ {0,1,—-1} and U: (o, 58) — (9(B),9(8)/) is a bijection K* x K' —
K' x K*.

Proof. If B # 1, then ¥%(3) = 3, 9(0) = —1 and ¥(—1) = 0. Hence ¥ permutes K.
The mapping ¥ clearly sends K* x K’ to K’ x K* injectively. If (vy,0) € K' x K*,

then (v,8) = ¥ (v/8,971(7)). O
Lemma E.5. Assume char(K) # 2. The mappings
a+d 1 A+2 A-2
(a,d) — <2a — d’4a — d) (A,B) — (B’ B) (E.4)

are mutually inverse if (a,d) € K* X K*, a#d, and (A,B) € K x K*, A # +2.

Proof. Let A =2(a+d)/(a—d) and B = 4/(a—d), where a,d € K and a # d. Then
B#0,Aa—Ad =2a+2d, (A—2)a = (A+2)d,a = (4+ Bd)/B, (A—2)(4+ Bd) =
ABd+2Bd, —4— Bd+2A = Bd,d=(A-2)/B,4+Bd = A+2and a = (A+2)/B.
This establishes a bijection between the set of all (a,d) € K x K, a # d, and the
set K x K*. The rest is clear. ]

Lemma E.6. Let char(K) # 2 and suppose that a,d € K* are such that a # d.
Set A=2(a+d)/(a—d) and B =4/(a —d), and assume that o, € K are such
that & # 0 and 8 ¢ {0,1,-1}. Putu= (1+6)/(1 —B) and v =u/a. Then

a? + 2 =14+do*f? < Bvl=u’+Au®+u.

Proof. Multiplying the equality Bv? = u® + Au? + u by (1 — )3, dividing it by
1+ B, and using (14 B)(1 — B) = 1 — B? yields an equivalent equation

B(1=8%)a™ = (1+8)* + A(1 = %) + (1= B)* = A(1 = %) +2(1 + B°).
Hence (1 — 8%)(Ba=2 — A) = 2(1 + ?). Therefore
2(1-6%)(207% = (a + d)) = 2(a — d)(1 + %),

which is the same as 2a=2 — (a + d) — 207232+ 3%2d = a —d — df3? and as a2 —
a~28% 4+ 3%2d = a. The latter can be written as 1+ da?3% = aa® + 2. Nothing else
is needed since none of the transformations changes the set of solutions because
a#0and 8¢ {—1,0,1} has been assumed. O

Theorem E.7. Let K be a field of characteristic # 2, and let a,d € K* be such
that a # d. Set A = 2(a+d)/(a —d) and B = 4/(a — d). The twisted Edwards
curve E given by 1 + dx?x% = ax? + 22 is birationally equivalent over K to the
Montgomery curve M given by Bx3 = x3 + Ax? + x1. The rational map E — M
may be represented by ((1 + x2)/(1 — x2), (1 + x2)/x1(1 — z3)), and the inverse
rational map M — E by (x1/x2, (x1 —1)/(z1 + 1)).

Proof. The described rational map E — M sends nearly all elements of E upon M
by Lemma E.6. The mapping is injective and its image covers nearly all elements
of M, by Lemma E.4. It is immediately clear that the described rational map
M — FE behaves as an inverse mapping at each point where it is possible to define
composition of the both mappings. O

Corollary E.8. Let K be a field of characteristic # 2. For each twisted Edwards
curve E over K there exists a smooth Montgomery curve M that is birationally
equivalent over K to E, and for each smooth Montgomery curve M over K there
exists a twisted FEdwards curve E that is birationally equivalent over K to M.

Proof. This immediately follows from Theorem E.7 and Lemma E.5. U



28

E.3. Completed curves and various formulas. Formula (E.3) is not the only
way how the addition upon a twisted Edwards curve may be expressed. The so
called dual addition law

(a1, 2) ® (51, B2) = (

aran + 1 ayan — ﬁlﬁz) (E.5)

asfs +aai B’ a1fs — asf

is an alternative. It gives the same result as (E.3) whenever the denominators in
both (E.3) and (E.5) are nonzero. Obviously, (E.5) may never be used for doublings.
However, it is important both theoretically and practically, since it is a source of
various speed-ups. The speed-ups usually work differently for the doubling and for
the addition of distinct points (which is often called a generic addition). They are
used if the context does not require a closed formula that makes the computation
resistant to side channel attacks.

Let us observe that the dual addition law really works. If the denominators are
nonzero, then the equality

arag + S5 _ oy f2 + By
agfs +aci B 1+ daiaafBe

holds if and only if

araz + dajas Bz + BiPa + darasfi s
= ayoa(1+dBTB3) + B1Ba(1 + daja3)
= aroz(afi + B3) + BiB2(aat + a3)

is equal to (2832 + aayB1)(a1B2 + asBr). That is clearly true.
The proof for the second coordinate may be done similarly.

When the addition is computed upon projective coordinates, i.e. upon the
zeros of aX? X3+ X2X2 = X5 +dX?X3, then it is possible to order the operations
in such a way that the addition of distinct point (the generic addition) costs 10M +
1S + la + 1d, where la + 1d refer to multiplications by a and d (which may be
chosen small), while the cost of doubling is 3M + 4S + 1a.

There have been also used inverted coordinates which correspond to the equa-
tion aX; 2 X524+ X, 2 X2 = X3P +dX;2X, 2, and thus also to aX3 X2 + X7 X3 =
X?2X2+dX3. In these coordinates the cost of generic addition is 9M + 1S+ la + 1d,
and the doubling costs 3M + 4S + 1a + 1d.

We shall skip extended coordinates and turn directly to completed coor-
dinates. They use projective coordinates, but not in P2 or P3, but in P' x P!
The curve, say U, is formed by all ((ag : ag), (81 : B2)) for which the substitutions
(Xl,XQ) — (Oél,QQ) and (}/1,)/2) — (Bl,ﬂg) fulfil

aX3YE +YEXT = XJY3 +dX3PYE (E.6)

Note that ((aq : a2), (81 : B2)) = ((paq : pas), (vBy : vB2)) for any p,v € K*. The
advantage of completed coordinates is that in this setting each K-rational point of
U corresponds to exactly one place of degree one in the function field K (E), where
E is the curve given by az? + 23 = 1 + dz?23. The points of E(K) may hence
be identified bijectively with the K-rational points of U. The affine points of F
obviously embed into U by (a, 8) — ((a: 1), (8 :1)). If d is a square in K, d = s2,
then ((1 :5),(1:0)) € U and ((1 : —s),(1 : 0)) € U express the two places at
infinity that sit in the singular projective point (0:1:0). If a/d is a square in K,
a/d = t2, then ((1:0),(¢: 1)) and ((1 : 0),(—t : 1)) correspond to the places at
infinity at (1:0:0).
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The computation of

(a1 : ag), (B1: B2)) @ (11 : 72), (61 : 62))
requires two formulas. One yields ((p1 : p2), (11 : v2)), and the other ((p] : ), (V] :
vh)). Since piph = pipe and v1vh = vive, both formulas yield the same result if
both of them belong to P! x P'. However, it may happen that g1 = ps = 0 or

vy =y =0. /In such a case both (uf, ph) and (v, v4) are distinct from (0, 0), and

((ph = ph), (V] ¢ vg)) is the result of the addition. Similarly, if g} = py = 0 or

Vi = vh =0, then the result is ((p1 : p2), (11 : v2)). The formulas are as follows:
11 = a1 Bay20r + afimida,  py = a1fiyeds + asfayidi,
pi2 = aafayads + darfimidr,  py = aayBayida + aafiy2di,
V1 = agfiyeds — a1 foyida, vy = a1 f17202 — azfayidn,

vy = aflay202 — don fim1d1, vy = o fay261 — axfimida.

(E.7)

Let us now observe how these formulas correspond to formulas (E.3) and (E.5). Let
o= (01,09) and T = (71, 72). By (E.3) and (E.5) o & 7 is equal to

0172 + 0271 O9To — A0O1T] and 0109 +T1T2 0102 — T1T2
14 dojoarime’ 1 —doioamiTs 09Ty + ao1 T 0172 — 09Ty

respectively.
Insert o, 7 € A2 into P! x P! by

(01,02) — ((61 : 1), (02 : 1)) and (71, 72) — ((11: 1), (12 : 1)).

Apply now (E.7) with oy = 01,01 = 02,71 = 71, 01 = 72, and the other values
being equal to 1. We obtain

I
K1 = 01T2 + 0271, Wy = 0102 + T1T2,
I
ﬂ2:1+d01027172, ,LLQZGO'lTl-f—O'QTQ,
/
V1 = 0272 — a01T1, YV = 0102 — T1T2,
/
V2:1—d0'10'27'1’7'2, V220'17'2—0'2T1.

We see that rules (E.7) can be interpreted as a transformation of the main addition
law (E.3) and the dual addition law (E.5) to projective points. However, in addition
to that, rules (E.7) may be applied to points and places at infinity. For example
consider ((1:s),(1:0))@® ((1: —s),(1:0)), where s> = d. Then (uy, pa,v1,v2) =
(0,d,—d,—d) and (u}, ph,vi,v4) = (0,—d,0,0). Hence only the former quadruple
may be used to compute the result of the addition. The result is

((0:d),(=d:—d))=((0:1),(1:1)), i.e., the affine point (0,1).

Recall that (0,1) is the neutral element of the group. Points ((1 : s), (1 : 0)) and
((1:—s),(1:0)) are thus opposite each to other.



