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E. Edwards curves

An elliptic curve over a field K is a projective curve E such that the function
field K(E) is of genus 1, and E contains at least one K-rational point. The curve
E is often considered in its affine version. This is particularly true if the curve is
smooth and there is only one point at infinity.

For each elliptic curve there exists a smooth Weierstraß curve C such that
K(E) ∼= K(C). For each elliptic curve it is possible to define a group operation
⊕. The group is then denoted by E(K). If K(E) ∼= K(C), then E(K) ∼= C(K).
Are there any reasons why there should be considered other elliptic curves but the
smooth Weierstraß curves? One reason may be computational, and this is why
Montgomery curves have been considered. Another reason may be structural. In
cryptographic applications the fact that doubling and adding proceeds differently
makes an implementation vulnerable to side channel attacks. We would like to have
an elliptic curve with only one formula for both doubling of a point, and addition
of two distinct points. Such a formula is sometimes known as a closed formula or
a uniform formula.

Edwards curves fulfil such a requirement. Some of the Edwards curves have no
K-rational point at infinity, and these are those for which a closed formula can be
used indiscriminately. This is also true for the so called twisted Edwards curves,
which is a somewhat more general notion. Twisted Edwards curves correspond to
Montgomery curves. Assume char(K) 6= 2. Then for each twisted Edwards curve
E there exists a smooth Montgomery curve M such that M(K) ∼= E(K), and vice
versa.

To define the group E(K), E an elliptic curve, in full generality, the notion of a
place is needed. Elements of E(K) are places of degree one. If α ∈ E is a smooth
point, then there is only one place at α. However, if α is a singular point, then
there are either more places at α, or there is a place of degree > 1. That makes
the connection between K-rational projective points of E and elements of E(K) a
bit more complicated. If E is a twisted Edwards curve, then all affine points are
smooth and all points at infinity are singular. If all places induced by K-rational
points at infinity are of degree > 1, then each element of E(K) can be represented
by exactly one affine point. Thus in this case E(K) may be constructed directly
upon the set of all affine K-rational points. In the general case the affine points
may be also used, but their set has to be extended by two or four extra elements
that correspond to “places at infinity”. There are several ways how to do that
formally, and some of them have computational consequences. These are discussed
below.

E.1. Branches and the definition. Consider a curve described by equation

y2 + x2 = 1 + dx2y2 (E.1)

that is defined over real numbers. There are good reasons to expect that the corre-
sponding projective curve will have one or two components of connectivity, each of
them closed, similarly as in the case of Weierstraß curves. However, the number of
connectivity components of an affine curve may be bigger than the number of com-
ponents of its projective completion. (Think about a hyperbole which has only one
component in projective coordinates, but two in affine coordinates.) For a while,
for the sake of simplicity of expression, call an affine component of connectivity a
branch. Denote the curve by E.

Suppose first that d = s2 and s > 1. When (E.1) is written in the form y2 =
(1− x2)/(1− s2x2), then it is easy to deduce that in this case there exists exactly
one branch which satisfies y > 0 and x ∈ (−s−1, s−1). This branch has a shape
of the letter ∪, with x = −s−1 and x = s−1 being tangents at infinity, and (0, 1)



24

being the bottom point. By turning the branch bottom up, i.e. by reflecting it
along the axis x (the line y = 0), we obtain another branch. This branch satisfies
y < 0 and x ∈ (−s−1, s−1). Since the definition of the curve is x ↔ y symmetric,
the other two branches are obtained by right angle rotation of the branches that
have been already described. So there are four branches, none of which is closed.
Extreme points of these branches are (0, 1), (0,−1), (1, 0) and (−1, 0). Note that
these points belong to E for any field K and any element d ∈ K.

At this point the reader might wish to guess the number of points at infinity
without actually computing them.

If 0 < s < 1 and d = s2, then there are five branches, and the central branch is
closed.

If d < 0, then any point (α, β) ∈ E fulfils |α| ≤ 1 since β2 = (1− α2)/(1− dα2)
and 1 − dα2 ≥ 1 for every α. Similarly, |β| ≤ 1. In this case there is only one
branch. The branch is closed and resembles a somewhat smoothed star from the
logo of an Orion chocolate bar. Note that if d = 0, then the curve coincides with a
circle. With decreasing d, the circle gets more and more pressed crosswise towards
the centre (the pressure comes along the quadrangle axes).

Consider now the projective curve induced by (E.1), for any fieldK, char(K) 6= 2.
The equation is Y 2Z2 + X2Z2 = Z4 + dX2Y 2. Assume d 6= 0. If Z = 0, then
dX2Y 2 = 0. There are thus two points at infinity, (0 : 1 : 0) and (1 : 0 : 0). Both
of them are singular. If K = R and d = s2 > 1, then the two affine branches with
x ∈ (−s−1, s) make one projective branch in the shape of the digit 8. The point of
crossing is equal to the projective point (0 : 1 : 0). There are two distinct places
of degree 1 at this point. Think about the point as if consisting of two “ideal”
points. Separating them “resolves the singularity” and changes the shape of 8 into
a (topological) circle. If 1 > d = s2 > 0, then the situation is similar but somewhat
different since there is a central closed affine branch. The other four affine branches
form a single projective branch the shape of which can be represented by two circles
that intersect in two points. The points of crossing are (1 : 0 : 0) and (0 : 1 : 0).
Singularities can be resolved in a similar manner, and that makes this projective
branch a topological circle too.

If d < 0, then each place of degree one of K(E) corresponds to a (unique) affine
point. In fact, this is true for any field K, char(K) 6= 2, when d is not a square.
How does this relate to the fact that the projective curve contains K-rational points
(1 : 0 : 0) and (0 : 1 : 0) in this case too? The answer is that at each of these points
there sits a single place, and this place is not of degree one, but of degree two.
These points thus do not influence the structure of the group E(K). Of course, the

situation changes if the same curve is considered over the field K[
√
d].

An Edwards curve over K, char(K) 6= 2, is any curve given by (E.1), with
d /∈ {0, 1}. A twisted Edwards curve over K, char(K) 6= 2 is a curve given by

ax2 + y2 = 1 + dx2y2, where a, d ∈ K∗ and a 6= d. (E.2)

Usage of the adjective “twisted” indicates that the class of twisted Edwards curves
extends the class of Edwards curves only modestly. To see this note that if a = b2,
then (bx)2 + y2 = 1 + db−2(bx)2y2. A twisted Edwards curve with parameters
(b2, d) is K-equivalent to the Edwards curve given by x2 + y2 = 1 + db−2x2y2.
More generally, there is a K-equivalence between parameters (b2c, d) and (c, b−2d).
To cover the class of twisted Edwards curves over a finite field Fq, q odd, it is
thus enough to consider the Edwards curves, and the curves given by ϑx2 + y2 =
1 + dx2y2, where ϑ is a preselected nonsquare.

Let us now verify that the polynomial ax21 + x22 − 1 − dx21x
2
2 ∈ K[x1, x2] is

absolutely irreducible if a, d ∈ K∗ and a 6= d. Up to now we have tacitly assumed
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that this is true. If it have not been true, we could not have had considered the
function field K(E) since this assumes that the polynomial defining E is irreducible.

Proposition E.1. Let K be a field, char(K) 6= 2. Assume that a1, a2, d ∈ K∗.
The polynomial f(x1, x2) = a1x

2
1 + a2x

2
2− 1− dx21x22 is absolutely irreducible if and

only if d 6= a1a2.

Proof. If d = a1a2, then f = (a1x
2
1 − 1)(1 − a2x22). Let f = g1g2, where g1, g2 ∈

K̄[x1, x2]. If degx1
(g1) = degx2

(g1) = 2, then g2 ∈ K̄∗. Assume that g1, g2 /∈ K̄∗.
Suppose first that gi = αix

2
i + βixi + γi ∈ K̄[xi], i ∈ {1, 2}. In the polynomial

f(x1, x2) the coefficients at both x21x2 and x1x
2
2 vanish. We have α1α2 = −d 6= 0.

Hence both β1 and β2 must vanish too. Now, f = g1g2 = α1α2x
2
1x

2
2 + α1γ2x

2
1 +

α2γ1x
2
2+γ1γ2. Therefore γ1γ2 = −1, α1γ2 = a1, α2γ1 = a2 and −d = −α1γ1γ2α2 =

−a1a2.
Assume d 6= a1a2. We have shown that there cannot be degxi

(gj) ∈ {0, 2} for
all i, j ∈ {1, 2}. Hence there exists i ∈ {1, 2} such that degxi

(g1) = degxi
(g2) = 1.

Because of the x1 ↔ x2 symmetry it may be assumed that i = 1. This means that
the polynomial f splits over the field of rational functions K̄(x2) when regarded
as a quadratic polynomial in one variable x1. This can happen if and only if the
discriminant −4a1(a2x

2
2 − 1)(1 − da−11 x22) is a square in K̄[x2]. If it is a square,

then all of the roots have to have an even multiplicity. This is not possible since
the polynomials a2x

2
2 − 1 and 1− da−11 x22 have no common root because d 6= a1a2

is assumed, and none of them has a double root because char(K) 6= 2. �

Lemma E.2. Let K be a field, char(K) 6= 2. Assume that a1, a2, d ∈ K∗, d 6= a1a2
and f(x1, x2) = a1x

2
1+a2x

2
2−1−dx21x22. Let α1, α2 ∈ K̄ be such that f(α1, α2) = 0.

Then (∂f/∂xi)(α1, α2) 6= 0 for at least one i ∈ {1, 2}.

Proof. First note that ∂f/∂xi = 2xi(ai − dx2j ), where i, j ∈ {1, 2} and j 6= i.

If α1 = 0, then α2
2 = a−12 6= 0 and (∂f/∂x2)(0, α2) = 2α2a1 6= 0. Suppose

that αi 6= 0 and (∂f/∂xi)(α1, α2) = 0 for both i ∈ {1, 2}. Then α2
1 = a2d

−1,
α2
2 = a1d

−1 and f(α1, α2) = a1a2d
−1 +a1a2d

−1−1−a1a2d−1 = d−1(a1a2−d) 6= 0,
a contradiction. �

Corollary E.3. Let K be a field with char(K) 6= 2. Any twisted Edwards curve
over K is smooth at every of its affine points.

If E is an elliptic curve over K, then any of its K-rational points may be chosen
as the neutral element of E(K). The choice is a matter of convention and is made
so that the addition formula is as simple as possible. For twisted Edwards curves
the neutral element has been chosen to be equal to (0, 1). The closed formula for
addition is

(α1, α2)⊕ (β1, β2) =

(
α1β2 + α2β1

1 + dα1α2β1β2
,
α2β2 − aα1β1
1− dα1α2β1β2

)
. (E.3)

This formula works for any two affine points provided dα1α2β1β2 6= ±1. If the
latter condition is not satisfied, then the result is one of the places of infinity.
Their number can be expressed as 2(ε1 + ε2), where ε1, ε2 ∈ {0, 1} is defined so
that ε1 = 1 if d is a square, and ε2 = 1 if ad−1 is square. Each of the places at
infinity is an element of E(K) that is either of order 2, or of order 4. Applications
in cryptography are mainly concerned with points P ∈ E(K) that are of large
prime order. For these applications computation rules involving places at infinity
are thus not needed. However, for other applications, like factorization algorithms,
these formulas have to be established. This will be discussed later.
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E.2. Birational equivalence. Let C = Vf , f ∈ K[x1, x2] irreducible. Recall
that K(C) can be interpreted as a set of partial mappings ρ : C → K that can be
represented by rational mappings a(x1, x2)/b(x1, x2), b /∈ (f). If α ∈ C and b(α) 6=
0, then ρ(α) = a(α)/b(α). Recall also that a1/b1, a2/b2 ∈ K(x1, x2), b1, b2 /∈ (f),
represent the same ρ ∈ K(C) if and only if a1b2−a2b1 ∈ (f), i.e., if (a1 +(f))/(b1 +
(f)) and (a2 + (f))/(b2 + (f)) denote the same element of K(C). The partial
mapping ρ is defined at α ∈ C whenever there exists a representative a/b such that
b(α) 6= 0. There are only finitely many α ∈ C at which ρ(α) is not defined. This
is because if a/b represents ρ, b /∈ (f), then there are only finitely many α ∈ C
such that b(α) = 0. We say that ρ is defined nearly everywhere. This is meant as
a synonym to up to finitely many elements (or points). Use Dom(ρ) to denote the
domain of ρ, i.e. the set of elements where ρ is defined.

Let C1 = Vf1 and C2 = Vf2 , where f1, f2 ∈ K[x1, x2] are irreducible. A pair
ρ = (ρ1, ρ2) ∈ K(C)2 is said to be a rational map C1 → C2 if (ρ1(α), ρ2(α)) ∈ C2

whenever α ∈ Dom(ρ) = Dom(ρ1)∩Dom(ρ2). The curves C1 and C2 are birationally
equivalent (over K) if there exist rational maps ρ : C1 → C2 and σ : C2 → C1 such
that σρ(α) = α for nearly all α ∈ C1 and ρσ(β) = β for nearly all β ∈ C2 (an
equivalent condition: σρ(α) = α whenever α ∈ Dom(ρ) ∩ ρ−1(Dom(σ)), similarly
for β).

If ρ : C1 → C2 and σ : C2 → C1 yield a birational equivalence, then there exist
mutually inverse K-isomorphisms σ∗ : K(C1) ∼= K(C2) and ρ∗ : K(C2) ∼= K(C1)
such that xi + (f1) 7→ σi and xi + (f2) 7→ ρi. In fact, K(C1) and K(C2) are
K-isomorphic if and only if C1 and C2 are birationally equivalent over K.

To see that a birational equivalence induces mutually inverse isomorphisms of
function fields is not too difficult. Nevertheless it is technically somewhat demand-
ing. For a reader who would like to verify the statement the following comments
may be useful. If τ ∈ K(C1), then σ∗(τ) = σ∗(τ(x1 + (f1), x2 + (f1))) = τ(σ∗(x1 +
(f1)), σ∗(x2 + (f1))) = τ(σ1, σ2). Hence σ∗(τ)(β) = τ(σ1(β), σ2(β)) = τσ(β)
for every β ∈ C2. Since σ∗ρ∗(xi + (f2)) = σ∗(ρi) we get σ∗ρ∗(x1 + (f2))(β) =
σ∗(ρ1)(β) = ρ1σ(β). Now ρσ(β) = (ρ1σ(β), ρ2σ(β)) is assumed to be equal to
β = (β1, β2) nearly everywhere. Hence ρ1σ(β) = β1 nearly everywhere, and there-
fore σ∗ρ∗(x1 + (f2)) = σ∗(ρ1) = x1 + (f2). Similarly, σ∗ρ∗(x2 + (f2)) = x2 + (f2),
and hence σ∗ρ∗ = idK(C2). The equality ρ∗σ∗ = idK(C1) follows in the same way.

If C1 and C2 are birationally equivalent elliptic curves, then C1(K) ∼= C2(K).
This is because the structure of the abelian group Ci(K) fully depends upon the
structure of the function field K(Ci). If the fields are isomorphic, then the groups
are isomorphic too.

Recall that equations f1(x1, x2) = 0 and f2(x1, x2) = 0 are said to be K-
equivalent if the polynomials can be obtained one from another by a linear substi-
tution. Such substitutions induce a birational equivalence between C1 and C2 that
is realized by affine mappings, i.e. by a linear change of coordinates, like in the case
of Weierstraß and Montgomery curves. However, not every birational equivalence is
affine. Below we shall observe that twisted Edwards curves are birationally equiva-
lent to Montgomery curves. The advantage of invertible affine (or linear) mappings
is that they are defined globally for all α ∈ A2 = K̄ × K̄, and their inversions are
affine (linear) too. The birational equivalence may be thus obtained by restricting
a global mapping to curves.

A linear fractional mapping x 7→ (ax+ c)/(bx+ d), ad− bc 6= 0, nearly permutes
an affine line (it may be extended to a permutation of the projective line by ∞ 7→
a/b and −d/b 7→ ∞). Linear fractional mappings thus may serve as a tool to
define transformations of A2 that are very close to permutations. One of such
transformations is used to associate Montgomery and Edwards curves:
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Lemma E.4. Assume char(K) 6= 2. Then ϑ : β 7→ (β + 1)/(β − 1) permutes the
set K ′ = K \ {0, 1,−1} and Ψ: (α, β) 7→ (ϑ(β), ϑ(β)/α) is a bijection K∗ ×K ′ →
K ′ ×K∗.

Proof. If β 6= 1, then ϑ2(β) = β, ϑ(0) = −1 and ϑ(−1) = 0. Hence ϑ permutes K ′.
The mapping Ψ clearly sends K∗ ×K ′ to K ′ ×K∗ injectively. If (γ, δ) ∈ K ′ ×K∗,
then (γ, δ) = Ψ(γ/δ, ϑ−1(γ)). �

Lemma E.5. Assume char(K) 6= 2. The mappings

(a, d) 7→
(

2
a+ d

a− d
, 4

1

a− d

)
(A,B) 7→

(
A+ 2

B
,
A− 2

B

)
(E.4)

are mutually inverse if (a, d) ∈ K∗ ×K∗, a 6= d, and (A,B) ∈ K ×K∗, A 6= ±2.

Proof. Let A = 2(a+d)/(a−d) and B = 4/(a−d), where a, d ∈ K and a 6= d. Then
B 6= 0, Aa−Ad = 2a+2d, (A−2)a = (A+2)d, a = (4+Bd)/B, (A−2)(4+Bd) =
ABd+2Bd, −4−Bd+2A = Bd, d = (A−2)/B, 4+Bd = A+2 and a = (A+2)/B.
This establishes a bijection between the set of all (a, d) ∈ K ×K, a 6= d, and the
set K ×K∗. The rest is clear. �

Lemma E.6. Let char(K) 6= 2 and suppose that a, d ∈ K∗ are such that a 6= d.
Set A = 2(a + d)/(a − d) and B = 4/(a − d), and assume that α, β ∈ K are such
that α 6= 0 and β /∈ {0, 1,−1}. Put u = (1 + β)/(1− β) and v = u/α. Then

aα2 + β2 = 1 + dα2β2 ⇐⇒ Bv2 = u3 +Au2 + u.

Proof. Multiplying the equality Bv2 = u3 + Au2 + u by (1 − β)3, dividing it by
1 + β, and using (1 + β)(1− β) = 1− β2 yields an equivalent equation

B(1− β2)α−2 = (1 + β)2 +A(1− β2) + (1− β)2 = A(1− β2) + 2(1 + β2).

Hence (1− β2)(Bα−2 −A) = 2(1 + β2). Therefore

2(1− β2)(2α−2 − (a+ d)) = 2(a− d)(1 + β2),

which is the same as 2α−2 − (a+ d)− 2α−2β2 + β2d = a− d− dβ2 and as α−2 −
α−2β2 +β2d = a. The latter can be written as 1 +dα2β2 = aα2 +β2. Nothing else
is needed since none of the transformations changes the set of solutions because
a 6= 0 and β /∈ {−1, 0, 1} has been assumed. �

Theorem E.7. Let K be a field of characteristic 6= 2, and let a, d ∈ K∗ be such
that a 6= d. Set A = 2(a + d)/(a − d) and B = 4/(a − d). The twisted Edwards
curve E given by 1 + dx21x

2
2 = ax21 + x22 is birationally equivalent over K to the

Montgomery curve M given by Bx22 = x31 + Ax21 + x1. The rational map E → M
may be represented by ((1 + x2)/(1 − x2), (1 + x2)/x1(1 − x2)), and the inverse
rational map M → E by (x1/x2, (x1 − 1)/(x1 + 1)).

Proof. The described rational map E →M sends nearly all elements of E upon M
by Lemma E.6. The mapping is injective and its image covers nearly all elements
of M , by Lemma E.4. It is immediately clear that the described rational map
M → E behaves as an inverse mapping at each point where it is possible to define
composition of the both mappings. �

Corollary E.8. Let K be a field of characteristic 6= 2. For each twisted Edwards
curve E over K there exists a smooth Montgomery curve M that is birationally
equivalent over K to E, and for each smooth Montgomery curve M over K there
exists a twisted Edwards curve E that is birationally equivalent over K to M .

Proof. This immediately follows from Theorem E.7 and Lemma E.5. �
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E.3. Completed curves and various formulas. Formula (E.3) is not the only
way how the addition upon a twisted Edwards curve may be expressed. The so
called dual addition law

(α1, α2)⊕ (β1, β2) =

(
α1α2 + β1β2
α2β2 + aα1β1

,
α1α2 − β1β2
α1β2 − α2β1

)
(E.5)

is an alternative. It gives the same result as (E.3) whenever the denominators in
both (E.3) and (E.5) are nonzero. Obviously, (E.5) may never be used for doublings.
However, it is important both theoretically and practically, since it is a source of
various speed-ups. The speed-ups usually work differently for the doubling and for
the addition of distinct points (which is often called a generic addition). They are
used if the context does not require a closed formula that makes the computation
resistant to side channel attacks.

Let us observe that the dual addition law really works. If the denominators are
nonzero, then the equality

α1α2 + β1β2
α2β2 + aα1β1

=
α1β2 + α2β1

1 + dα1α2β1β2

holds if and only if

α1α2 + dα2
1α

2
2β1β2 + β1β2 + dα1α2β

2
1β

2
2

= α1α2(1 + dβ2
1β

2
2) + β1β2(1 + dα2

1α
2
2)

= α1α2(aβ2
1 + β2

2) + β1β2(aα2
1 + α2

2)

is equal to (α2β2 + aα1β1)(α1β2 + α2β1). That is clearly true.
The proof for the second coordinate may be done similarly.

When the addition is computed upon projective coordinates, i.e. upon the
zeros of aX2

1X
2
3 +X2

2X
2
3 = X4

3 +dX2
1X

2
2 , then it is possible to order the operations

in such a way that the addition of distinct point (the generic addition) costs 10M+
1S + 1a + 1d, where 1a + 1d refer to multiplications by a and d (which may be
chosen small), while the cost of doubling is 3M + 4S + 1a.

There have been also used inverted coordinates which correspond to the equa-
tion aX−21 X−23 +X−22 X−23 = X−43 +dX−21 X−22 , and thus also to aX2

2X
2
3 +X2

1X
2
3 =

X2
1X

2
2 +dX4

3 . In these coordinates the cost of generic addition is 9M+1S+1a+1d,
and the doubling costs 3M + 4S + 1a+ 1d.

We shall skip extended coordinates and turn directly to completed coor-
dinates. They use projective coordinates, but not in P2 or P3, but in P1 × P1.
The curve, say U , is formed by all ((α1 : α2), (β1 : β2)) for which the substitutions
(X1, X2) 7→ (α1, α2) and (Y1, Y2) 7→ (β1, β2) fulfil

aX2
1Y

2
2 + Y 2

1 X
2
2 = X2

2Y
2
2 + dX2

1Y
2
1 . (E.6)

Note that ((α1 : α2), (β1 : β2)) = ((µα1 : µα2), (νβ1 : νβ2)) for any µ, ν ∈ K̄∗. The
advantage of completed coordinates is that in this setting each K-rational point of
U corresponds to exactly one place of degree one in the function field K(E), where
E is the curve given by ax21 + x22 = 1 + dx21x

2
2. The points of E(K) may hence

be identified bijectively with the K-rational points of U . The affine points of E
obviously embed into U by (α, β) 7→ ((α : 1), (β : 1)). If d is a square in K, d = s2,
then ((1 : s), (1 : 0)) ∈ U and ((1 : −s), (1 : 0)) ∈ U express the two places at
infinity that sit in the singular projective point (0 : 1 : 0). If a/d is a square in K,
a/d = t2, then ((1 : 0), (t : 1)) and ((1 : 0), (−t : 1)) correspond to the places at
infinity at (1 : 0 : 0).
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The computation of

((α1 : α2), (β1 : β2))⊕ ((γ1 : γ2), (δ1 : δ2))

requires two formulas. One yields ((µ1 : µ2), (ν1 : ν2)), and the other ((µ′1 : µ′2), (ν′1 :
ν′2)). Since µ1µ

′
2 = µ′1µ2 and ν1ν

′
2 = ν′1ν2, both formulas yield the same result if

both of them belong to P1 × P1. However, it may happen that µ1 = µ2 = 0 or
ν1 = ν2 = 0. In such a case both (µ′1, µ

′
2) and (ν′1, ν

′
2) are distinct from (0, 0), and

((µ′1 : µ′2), (ν′1 : ν′2)) is the result of the addition. Similarly, if µ′1 = µ′2 = 0 or
ν′1 = ν′2 = 0, then the result is ((µ1 : µ2), (ν1 : ν2)). The formulas are as follows:

µ1 = α1β2γ2δ1 + α2β1γ1δ2, µ′1 = α1β1γ2δ2 + α2β2γ1δ1,

µ2 = α2β2γ2δ2 + dα1β1γ1δ1, µ′2 = aα1β2γ1δ2 + α2β1γ2δ1,

ν1 = α2β1γ2δ1 − aα1β2γ1δ2, ν′1 = α1β1γ2δ2 − α2β2γ1δ1,

ν2 = α2β2γ2δ2 − dα1β1γ1δ1, ν′2 = α1β2γ2δ1 − α2β1γ1δ2.

(E.7)

Let us now observe how these formulas correspond to formulas (E.3) and (E.5). Let
σ = (σ1, σ2) and τ = (τ1, τ2). By (E.3) and (E.5) σ ⊕ τ is equal to(

σ1τ2 + σ2τ1
1 + dσ1σ2τ1τ2

,
σ2τ2 − aσ1τ1
1− dσ1σ2τ1τ2

)
and

(
σ1σ2 + τ1τ2
σ2τ2 + aσ1τ1

,
σ1σ2 − τ1τ2
σ1τ2 − σ2τ1

)
,

respectively.
Insert σ, τ ∈ A2 into P1 × P1 by

(σ1, σ2) 7→ ((σ1 : 1), (σ2 : 1)) and (τ1, τ2) 7→ ((τ1 : 1), (τ2 : 1)).

Apply now (E.7) with α1 = σ1, β1 = σ2, γ1 = τ1, δ1 = τ2, and the other values
being equal to 1. We obtain

µ1 = σ1τ2 + σ2τ1, µ′1 = σ1σ2 + τ1τ2,

µ2 = 1 + dσ1σ2τ1τ2, µ′2 = aσ1τ1 + σ2τ2,

ν1 = σ2τ2 − aσ1τ1, ν′1 = σ1σ2 − τ1τ2,
ν2 = 1− dσ1σ2τ1τ2, ν′2 = σ1τ2 − σ2τ1.

We see that rules (E.7) can be interpreted as a transformation of the main addition
law (E.3) and the dual addition law (E.5) to projective points. However, in addition
to that, rules (E.7) may be applied to points and places at infinity. For example
consider ((1 : s), (1 : 0)) ⊕ ((1 : −s), (1 : 0)), where s2 = d. Then (µ1, µ2, ν1, ν2) =
(0, d,−d,−d) and (µ′1, µ

′
2, ν
′
1, ν
′
2) = (0,−d, 0, 0). Hence only the former quadruple

may be used to compute the result of the addition. The result is

((0 : d), (−d : −d)) = ((0 : 1), (1 : 1)), i.e., the affine point (0, 1).

Recall that (0, 1) is the neutral element of the group. Points ((1 : s), (1 : 0)) and
((1 : −s), (1 : 0)) are thus opposite each to other.


