Logical programming

Svarny Petr

Katedra logiky FF UK

26. dubna 2021

Overview
Logical programming
Prolog
Prolog basics
Built-in predicates in Prolog
Datastructures in Prolog
Grammars

Cut

Logica
SQL
Logica vs SQL

Description logic and the Semantic Web
Ontologies
Semantic web
OCCDL

Logical programming

» Another declarative paradigm (,i.e., not imperative).
> Main rep. =Prolog=, but not the only one.

» Can be used for domain specific work (e.g.: Semantic web,
=Oracle Constraint Definition Language=).

https://www.swi-prolog.org/
https://www.w3.org/standards/semanticweb/
https://docs.oracle.com/cd/E18727_01/doc.121/e14319/T432521BABCIDCJ.htm

Basic idea

» Logic is awesome and can save us!

» Separate data and functions (again) via fixed reasoning engine
(i.e., the logic).

» The program is basically the data.

Some Prolog sources

» SWI Prolog

> Learn Prolog Now

» =Metalevel Prolog=

» =MFF Prolog=

» =Visual Prolog= Someone?
» =ISO Prolog=

https://www.swi-prolog.org/
http://www.let.rug.nl/bos/lpn//
https://www.metalevel.at/prolog
http://kti.ms.mff.cuni.cz/~bartak/prolog/index.html
https://www.visual-prolog.com/
https://www.iso.org/standard/21413.html

Core of Prolog

» First order predicate logic
» Horn clauses:

» implication form: u< pAgA... At
» disjunction form: uV =pV g V...V —t

Horn clauses

Definite clause
Definite clause is a Horn clause with only one positive literal.

u<—pANgAN...Nt

Unit clause

Unit clause is a Horn clause with no negative literals. Also called
Fact if u is not a variable.

u

Goal clause
Goal clause is a Horn clause without a positive literal.
L+ pAGA...AL

Selective Linear Definite clause resolution

Given clause u <+ p
Given fact p

Resulting goal u

i.e., to show u, show p.
The program becomes just a collection of facts resolved following

the above rule.

Prolog notation

U+ pAgA... N\t becomes:
u :—p, q, ..., t.

Prolog Term

Term
Basic Prolog data structure of the shape name(argument,...).
Terms can be:

» atomic

> variables

» compound

Prolog Simple Terms

Atomic

Atoms i.e. strings in quotes or beginning lower-cased, a, 'A’,
aA

Numbers e.g., 1

Variables
Prolog variables can be either beginning with capital letters (A,
Aa) or anonymous ().

Prolog Compound Terms

Compound terms and Functors

If T1, Ty,... are terms, then F(Ty, T,...) is a compound term.
There the atom F is called a functor name (same syntax rules as
atoms). We denote also F/N the principal functor with its arity

(e.g., parent/2).

Prolog Clauses

Rule
Head :- Body.

Fact or Base Clause
Head.
i.e. the rule: Head :- true.

Goal Clause
Body of each rule is a Prolog goal.

Clause
A Prolog clause is either a Prolog fact or a Prolog rule.

Prolog Predicates

Predicate
A predicate consists of a name and zero or more arguments. The

name is a Prolog atom. Each argument is an arbitrary Prolog term.

What is the difference betweeen a predicate and a functor?

Prolog Predicates

Predicate

A predicate consists of a name and zero or more arguments. The
name is a Prolog atom. Each argument is an arbitrary Prolog term.
l.e. a predicate is a collection of clauses. Where Pred/N is called a
predicate indicator.

Predicates are semantics, functors are syntax.

Prolog basic examples

What are the following?

lannister(tyrion).
stark (robb).
song_of_ice_and_fire.

Prolog basic examples

The Prolog prompt, i.e. inquiry, is denoted 7—.
lannister(tyrion).
stark (robb).

song_of_ice_and_fire.
7—

Prolog basic examples

lannister(tyrion).

stark (robb).
song_of_ice_and_fire.

?7— song_of_ice_and_fire.

Prolog basic examples

lannister (tyrion).
stark (robb).
song_of_ice_and_fire.
?7— song_of_ice_and _fire.

yes

Prolog basic examples

lannister(tyrion).
stark (robb).
song_of_ice_and_fire.
?7— game_of_thrones.

Prolog basic examples

lannister (tyrion).
stark (robb).
song_of_ice_and_fire.
?7— game_of_thrones.
no

Prolog basic examples

lannister (tyrion).
stark (robb).
song_of_ice_and_fire.
7— stark(tyrion).
no

Prolog basic predicates

Prolog has some predicates already predefined:

true /0
fail /0
/2 /% and x/
/2 /% or x/

:—/2 /% turnstile , if, x/
\+/1 /% negation as failure, optionally not/l x/

Prolog example

lannister(tyrion).

stark (robb).

zakerny(tyrion):—lannister(tyrion).
song_of_ice_and_fire.

nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nebezpecny(robb) :— stark(robb).

nebezpecny(robb) :— maArmadu(robb).

What are functors, predicates and atoms?

Prolog example

lannister(tyrion).

stark (robb).
zakerny(tyrion):—lannister(tyrion).
song_of_ice_and_fire.

nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nebezpecny(robb) :— stark(robb).
nebezpecny(robb) :— maArmadu(robb).

?7—zakerny(tyrion).

Prolog example

lannister(tyrion).
stark (robb).

zakerny(tyrion):—lannister(tyrion).
song_of_ice_and_fire.

nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nebezpecny(robb) :— stark(robb).

nebezpecny(robb) :— maArmadu(robb).

?7—zakerny(tyrion).
true

Prolog example

lannister(tyrion).

stark (robb).
zakerny(tyrion):—lannister(tyrion).
song_of_ice_and_fire.

nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nebezpecny(robb) :— stark(robb).
nebezpecny(robb) :— maArmadu(robb).

?—maArmadu(robb).

Prolog example

lannister(tyrion).

stark (robb).

zakerny(tyrion):—lannister(tyrion).
song_of_ice_and_fire.

nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nebezpecny(robb) :— stark(robb).

nebezpecny(robb) :— maArmadu(robb).

?—maArmadu(robb).
fail

Prolog resolution

“Logically, when Prolog answers a query, it tries to find a
resolution refutation of the negated query and the set of clauses
that constitute the program. When a refutation is found, it means
that the query is a logical consequence of the program.” And this

is achieved via syntactical unification.

Prolog unification

Unification
Denoted =/2.

1.

Any value can be unified with itself. E.g.: mother(john) =
mother(john).

A var with another var. Variable names then reference the
same variable. E.g.: X =Y, X = 2. Y is 2 also.

A var with any Prolog value (instantiation of the var, full if no
variables remain). E.g.: X = foo(bar, [1, 2, 3]).

. Two expressions unify if their constituents can be unified to

the same value. E.g.: mother(mary, X) = mother(Y,
father(Z)). Because unifies mary=Y and X=father(Z).

It is legal to unify a variable recursively, so carefully! E.g.: X =
foo(X, Y).

Unification examples

lannister(tyrion).
lannister(joffrey).

stark (robb).
zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion);
?7— lannister (X).

lannister(tyr

Unification examples

lannister(tyrion).
lannister(joffrey).

stark (robb).
zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion);
7— lannister (X).

X=tyrion

lannister (tyr

Unification examples

lannister(tyrion).
lannister(joffrey).

stark (robb).
zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion);
7— lannister (X).

X=tyrion;

lannister (tyr

Unification examples

lannister(tyrion).
lannister(joffrey).

stark (robb).
zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion);
?7— lannister (X).

X=tyrion;

X=joffrey

lannister(tyr

Unification examples

lannister(tyrion).
lannister(joffrey).
stark (robb).

zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
?7— lannister (X).

X=tyrion ;

X=joffrey;

fail

Unification examples

lannister(tyrion).

lannister(joffrey).

stark (robb).

zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nepratele(X,Y):— lannister (X),stark(Y).

7— nepratele(X,Y).

Unification examples

lannister(tyrion).

lannister(joffrey).

stark (robb).

zakerny(tyrion):—lannister(tyrion).
nebezpecny(tyrion):— zakerny(tyrion); lannister(tyr
nepratele(X,Y):— lannister(X),stark(Y).

?7— nepratele (X,Y).

tyrion ,

= robb;

<X <X
|

5

°

=

D

<

Reading a Prolog program

Declarative
Program declares what holds either unconditionally (facts) or
under certain conditions (clauses).

Procedural

Invoking a predicate is similar to calling a function with specifics of
Prolog (possibly unbound variables and backtracking). Very
complex to read and needs tracing of the program.

For details: =Metalevel=

https://www.metalevel.at/prolog/reading

Prolog more built-in examples

write/1 /x write the provided expression, i.e. prin
nl/0 /% new line x/

assert/1 /+ append to the database x/

asserta/l /+ prepend to the database x/

+/2 /* when evaluated sum of 2 values x/

==/2 /% succeed if X, Y identical x/

Prolog recursion

primy_pribuzny (X,Y) :— otec(X,Y); matka(X,Y);souroze
pribuzni(X, Y) :— primy_pribuzny (X, Y).

pribuzni(X, Y) :— primy_pribuzny (X, Z), pribuzni(Z,
pribuzni (X, Y) :— pribuzni(Y, X).

In general ?

Prolog recursion

primy_pribuzny (X,Y) :— otec(X,Y);matka(X,Y);souroze
pribuzni(X, Y) :— primy_pribuzny (X, Y).

pribuzni(X, Y) :— primy_pribuzny (X, Z), pribuzni(Z,
pribuzni(X, Y) :— pribuzni(Y, X).

In general:

predicate :— terminal.

predicate :— terminal, predicate.

Datastructures

Logical programming = describe relations between entities.

l.e. changing datastructures are not welcome. Relate the previous
entity with the "resulting” entity.

See =Metalevel=

https://www.metalevel.at/prolog/data

Pairs

Pair (-)/2

A datastructure composed of two elements. E.g., -(a,b) or also a-b.

NO strings

Basically use atoms instead of strings, if you need strings, then use
lists. =Prolog Library=

Except we are so used to strings... SWI etc. have them as separate
library.

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

List

List ./2

A datastructure composed of a Head and Tail part. E.g., .(a,b) or
also [a,b].

[] is an empty list atom.

[a,b,c]=.(a,.(b,c))=.(a,.(b,.(c.[])))

Prolog List exercises

What is the Head and Tail of the following lists?
>]
> [a]
> [[a, b], c, d]

Prolog List exercises

What is the Head and Tail of the following lists?
>]
» H = none, T = none
> [4]
» H=a, T=]]
> [[a, b], c, d]
» H=1ab], T = [c,d]

Pipe operator

Pipe operator

Separating the head from the tail in a list, i.e. .(H,T), can be done
by [H|T].

Uses unification to find the variables H and T.

Exercise

Recursion, Lists, Pipe operators
Define the predicate ismember.

Exercise

Recursion, Lists, Pipe operators
Define the predicate clen.

:— clen(X,T).

See also member /2.

Homework

Figure out the following predicates:
» concatenate a to a list (e.g., [cb] — [cba])
> join two lists (e.g., [ab] + [cd]| = [abcd]

Example of arithmetics

List length via arithmetics in Prolog:

len ([],0).
len ([-|T],N) :— len(T,X), N is X+1.

Instead of recursion

Use of accumulator instead of recursion:

accLen([-|T],A,L) :— Anew is A+1, acclLen(T,Anew,L).
accLen ([],AA).

leng (List ,Length) :— acclLen(List ,0,Length).

Sets

sidli(lannister , kingslanding).

sidli(lannister ,casterlyrock).

sidli(stark ,winterfell).

sidli(frey ,twins).

sidli(baratheon ,hdragonstone).

?7— bagof(X, sidli(Kdo,X),Misto). % all

?7— setof (X, sidli(Kdo,X),Misto). % sorted unique
?7— findall (X, sidli(Kdo,X),Misto). % only Misto

Simple generator

veta(Z):— podc(X), pric(Y), append(X,Y,Z).
podc(Z):— pojm(Z).

pric(Z):— s(X), pre(Y), append(X,Y,Z).
pric(Z):— s(Z).

pojm ([tywin]).

pojm ([jon]).

s(liel)-

pre([vyvrhel]).
? veta(X)

Exercise

How to add declension?

veta (Z):— podc(X), pric(Y), append(X,Y,Z).
podc(Z):— pojm(Z).

pric(Z):— s(X), pre(Y), append(X,Y,Z).
pric(Z):— s(Z).

pojm ([tywin])

pojm ([jon 1)

s([iel).

pre([vyvrhel]).
?7 veta(X)

Definite Clause Grammar

veta (X,Z):— podc(X,Y), pric(Y,Z).

Grammar with syntactic sugar:

veta —> podc, pric.
podc —> pojm.

pric —> s, pre.
pric —> s.

pojm —> [tywin].
pojm —> [jon].

s —> [je].

pre —> [vyvrhel].

? veta(X,[])-

Exercise

What does this generate?

ab —> [].
ab —> | ,ab,r.
| —> [a].
r —> [b].

Exercise

a"p"
ab —> [].
ab —> || ,ab,r.

| —> [a].
r—> [b].

Cut

Cut

1/0 is the cut predicate, always succeeds and prevents the return to
previous goals.

nepratele(X,Y):— lannister (X),stark(Y).
VS.

nepratele(X,Y):— lannister(X),!,stark(Y).

Cut

p:— a,b.
p:— c.
p < (aAb)Vc

VS.
p:— a,!,b.
p:— C.

p < (anb)V(-aAc)

Prolog workings

Glogical programming

Logical programming is still relevant!

Main motivation is to replace SQL.

Comes from =Datalog=, i.e. kind of Prolog.
For details: =Google Logica=

See also the =Tutorial=

https://en.wikipedia.org/wiki/Datalog
https://opensource.googleblog.com/2021/04/logica-organizing-your-data-queries.html
https://colab.research.google.com/github/EvgSkv/logica/blob/main/tutorial/Logica_tutorial.ipynb

Replacing what?

Replacing ... =SQL=.
Language for data manipulation and retrieval with COBOL based
natural language-like commands.

https://www.w3schools.com/sql/

SQL basic

SELECT * FROM Customers;
SELECT COUNT(DISTINCT Country) FROM Customers;

SELECT * FROM Customers
ORDER BY Country;

SELECT MIN(column_name)
FROM table_name
WHERE condition;

SQL Joins

=Joins=
SELECT Orders.OrderID, Customers.CustomerName

FROM Orders
INNER JOIN Customers
ON Orders.CustomerlD = Customers. CustomerlD;

https://www.w3schools.com/sql/sql_join.asp

SQL basic

MagicNumber(x: 2);
MagicNumber(x: 3)
MagicNumber(x: 5);

VS.

SELECT 2 AS x
UNION ALL
SELECT 3 AS x
UNION ALL
SELECT 5 AS x;

SQL basic

MagicNumber(x:) :—
x in [2, 3, 5];

Glogical programming

Facts aka Tables

v

v

Rules aka Queries
JSON-like structures

Conjunction aka Join

v

v

See also the =Tutorial=

https://colab.research.google.com/github/EvgSkv/logica/blob/main/tutorial/Logica_tutorial.ipynb

Description logic

Non-classical logic for reasoning about properties.

FOL DL OwWL
constant individual individual
unary predicate concept class

binary predicate role property

Description logic - language

Symbol Description
T top concept
1L bottom, empty concept
cnbD intersection /conjunction of concepts (and)
cubD union/disjunction of concepts (or)
-C negation of concepts
VR.C universal restriction, all R-successors are in C
JR.C existential restriction, an R-successors exists in C
ccoD concept inclusion, all C are D
cC=D C is equivalent to D
c=D definition, C is defined to be equal to D
a:C aisaC

(a,b): R a is R-related to b

DL variants

Many language variants, marked based on their properties.
ALC “Attribute language”

» Atomic negation
» Concept intersection
» Universal restriction
» Limited existential quantification
» Complex concept negation
FL “Frame based language”
» Concept intersection
» Universal restrictions
» Limited existential quantification

» Role restrictions

DL variants

Why so many variants?

DL variants

Different rules mean different complexity
Different complexity means different decidability
DLs are just fragments of general first order logic
See =ESSLLI 2018=

http://esslli2018.folli.info/introduction-to-description-logics/

Elements of a language - Common concepts

Domain specific languages

Boolean constructors (negation, conjunction, disjunction)
Role restrictions (existential and value restriction)

Complex concepts are created from atomic and other complex
concepts

Based also on the chosen logic

Elements of a language - Atomic concepts

Atomic concept names

C = Ay, ..., A,, subsets of the domain, i.e., basic classes of the
domain

E.g.: student, teacher, admin

Special concepts are: Top T (whole domain), Bottom L (empty)

Elements of a language - Relationships

Atomic role names

R =n,...,r,, powersets in the domain, i.e.: basic relations between
concepts

E.g.: employedBy, supervisedBy, ...

Elements of a language - Relationships

Individual names

| = ay, ..., a,, members of the domain, i.e.: names of the objects,
instantiations from the domain

E.g.: John, Jane, ...

Knowledge bases

Intentional knowledge

Definition of concepts, by subsumption statements
“TBox", T, (terminology)

Extensional knowledge

Instantiation of concepts and roles, the database, by assertions
“ABox", A, (assertion box), i.e. : expressions

Knowledge base (ontology)
TBox + ABox, < T, A >

Example

TBox:
» Woman = Female M Person
» Man = Male M Person
» T = Woman LI Man
» Parent = JhasChild. T

ABox:
» anne:Woman, pete:Person
» mary:Woman
> (pete, anne): hasChild
» (mary, anne): hasChild

Wecanstudy 7 = A=, < T,A>E=
Visualization is possible throught Venn diagrams and graphs.

Ontology

Ontologia, philosophical term, “nature of being and reality”
Technical ontologies = rigorous description of a domain:

>

>

>

>

its concepts/classes
objects/instantiations
and their relationships

with a shared conceptualisation (i.e. what ideas/concepts are
used)

Formal ontologies = captured by a formal system

Eg.

: Medical classification, biological taxonomy and gene

ontology,...

Basis of the Semantic Web project

Automated reasoning with many tools (e.g., =Protege= or see
=list=)

https://protege.stanford.edu/
http://www.cs.man.ac.uk/~sattler/reasoners.html

OWL

=Web Ontology Language=, W3C project for the Semantic Web

Split into sublanguages based on the need/use (Lite C DL C Full)

OWL ontology is an Resource Description Framework (RDF) graph

Can be also translated to RDF Schema, metadata models (can be
used with query languages as SPARQL) (XML-like annotation)

See tutorial for example =here=, especially =examples=

https://www.w3.org/TR/owl-ref/
https://www.cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-101/
https://www.cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-references-humans/

Semantic web

=Semantic web=, i.e. a web of data

Idea (was) to annotate data so that inferences are possible

E.g. Google data sheets were based on ontologies/semantic web
technology

Some problems:

» finding appropriate ontologies,
> annotating data,
» data usually hand-annotated, i.e. unreliable.

https://www.w3.org/standards/semanticweb/

SUMO

Suggested Upper Merged Ontology
Formal ontology that is free

Any kind of reasoning/domain

E.g.: Ebay to reason about products

Oracle Configurator Constraint Definition Language

=0CCDL= is an example of an internal tool of automated
reasoning

Used for server etc. setups in the Oracle shop

Clients can select their server config

Some configs are not possible (component interactions)

Deciding that by hand would be impossible

The properties of components are modeled in the CDL

A reasoner decides based on the model in the shop if the config is
possible

https://docs.oracle.com/cd/E18727_01/doc.121/e14319/T432521BABCIDCJ.htm

CDL example

CONTRIBUTE Frame.Width — 2xFrame.Border + 2%0.5

TO Glass.Width;
CONTRIBUTE Frame.Height— 2xFrame.Border + 2%0.5

TO Glass.Height;

	Logical programming
	Prolog
	Prolog basics

	Built-in predicates in Prolog
	Datastructures in Prolog
	Grammars
	Cut
	Logica
	SQL
	Logica vs SQL

	Description logic and the Semantic Web
	Ontologies
	Semantic web
	OCCDL

