Analytic combinatorics Lecture 5

April 7, 2021

Global properties of analytic functions

Recall: A complex function f is analytic in $z_0 \in \mathbb{C}$, if it is equal to the sum of a power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ on a neighborhood of z_0 .

Global properties of analytic functions

Recall: A complex function f is analytic in $z_0 \in \mathbb{C}$, if it is equal to the sum of a power series $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ on a neighborhood of z_0 .

Definition

Let $\Omega \subseteq \mathbb{C}$ be an open set. We say that f is analytic on Ω , if f is analytic in every point of Ω .

Global properties of analytic functions

Recall: A complex function f is analytic in $z_0 \in \mathbb{C}$, if it is equal to the sum of a power series $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ on a neighborhood of z_0 .

Definition

Let $\Omega \subseteq \mathbb{C}$ be an open set. We say that f is analytic on Ω , if f is analytic in every point of Ω .

Proposition

Let $A(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with radius of convergence $\rho > 0$. Define a function $f: \mathbb{N}_{<\rho}(0) \to \mathbb{C}$ by $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Then f is analytic on $\mathbb{N}_{<\rho}(0)$. Moreover, for $z_0 \in \mathbb{N}_{<\rho}(0)$, the series expansion of f with center z_0 has radius of convergence at least $\rho - |z_0|$.

Analytic continuation

Definition

Let $f: M \to \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \to \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M$, f(z) = g(z), and
- g is analytic on Ω.

Let $f: M \to \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \to \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M$, f(z) = g(z), and
- g is analytic on Ω .

Definition

A set $X \subseteq \mathbb{C}$ is . . .

• open if for every $z \in X$ there is an $\varepsilon > 0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;

Let $f: M \to \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \to \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M$, f(z) = g(z), and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is . . .

- open if for every $z \in X$ there is an $\varepsilon > 0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;
- disconnected if there are two disjoint open sets O_1 and O_2 such that $O_1 \cap X \neq \emptyset$, $O_2 \cap X \neq \emptyset$, and $X \subseteq O_1 \cup O_2$; otherwise, the set X is connected;

Let $f: M \to \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \to \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M$, f(z) = g(z), and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is . . .

- open if for every $z \in X$ there is an $\varepsilon > 0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;
- disconnected if there are two disjoint open sets O_1 and O_2 such that $O_1 \cap X \neq \emptyset$, $O_2 \cap X \neq \emptyset$, and $X \subseteq O_1 \cup O_2$; otherwise, the set X is connected;
- a domain if it is nonempty, open and connected;

Let $f: M \to \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \to \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M$, f(z) = g(z), and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is . . .

- open if for every $z \in X$ there is an $\varepsilon > 0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;
- disconnected if there are two disjoint open sets O_1 and O_2 such that $O_1 \cap X \neq \emptyset$, $O_2 \cap X \neq \emptyset$, and $X \subseteq O_1 \cup O_2$; otherwise, the set X is connected;
- a domain if it is nonempty, open and connected;
- discrete if for every $z \in X$ there is $\varepsilon > 0$ such that $\mathbb{N}_{<\varepsilon}(z) \cap X = \{z\}$.

Recall: If f is analytic in $z \in \mathbb{C}$ with f(z) = 0, then either f is identically zero on a neighborhood of z, or f is never zero on a punctured neighborhood of z.

Proposition (Global analytic uniqueness)

Let f be a function analytic on a domain Ω . Then the set $Z_f = \{z \in \Omega; f(z) = 0\}$ is either discrete or equal to Ω .

Proof:

$$Q_1 := \{z \in \Omega : \}$$
 is identically 0 on a $M_{z\xi}(z)$
for $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
some $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
some $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $z \ge 0$
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$, for
 $Q_2 := \{z \in \Omega : \}$ is never 0 on a $M_{z\xi}^*(z)$.

Global analytic uniqueness (proof)

But I is connected, keep hence $\nabla_{z} = \phi \quad \text{or} \quad \nabla_{z} = \phi.$ If O₁ = Ø, then O₂ = Ω and Z={ze Ω, {t==0} is discrete (possibly empty) If $o_2 = 0$, then $o_1 = \mathcal{L}$ and $Z_g = \mathcal{L}$.

Proposition (Global analytic uniqueness)

Let f be a function analytic on a domain Ω . Then the set $Z_f = \{z \in \Omega; f(z) = 0\}$ is either discrete or equal to Ω .

Proposition (Global analytic uniqueness)

Let f be a function analytic on a domain Ω . Then the set $Z_f = \{z \in \Omega; f(z) = 0\}$ is either discrete or equal to Ω .

Corollary

Let f and g be two functions analytic on a domain Ω . Then the set $\{z \in \Omega; f(z) = g(z)\}$ is either discrete or equal to Ω .

Proposition (Global analytic uniqueness)

Let f be a function analytic on a domain Ω . Then the set $Z_f = \{z \in \Omega; f(z) = 0\}$ is either discrete or equal to Ω .

Corollary

Let f and g be two functions analytic on a domain Ω . Then the set $\{z \in \Omega; f(z) = g(z)\}$ is either discrete or equal to Ω .

Corollary

Let $X \subseteq \mathbb{C}$ be a set which is not discrete, let $f : X \to \mathbb{C}$ be a function, let Ω be a domain containing X as a subset. Then f has at most one analytic continuation of to Ω .

Some notable analytic functions

Definition

$$e^{\sum_{n=0}^{\infty} \exp(z)} = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

Some notable analytic functions

Definition

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

Observe:

• The three series above have infinite radius of convergence, hence the definitions are applicable to every $z \in \mathbb{C}$, and the three functions are analytic on \mathbb{C} .

Some notable analytic functions

Definition

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

Observe:

- The three series above have infinite radius of convergence, hence the definitions are applicable to every $z \in \mathbb{C}$, and the three functions are analytic on \mathbb{C} .
- For any $z \in \mathbb{C}$, we have

$$\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2},$$

$$\sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i},$$

$$\exp(iz) = \cos(z) + i\sin(z).$$

Properties of sin, cos and exp

Proposition

The following holds:
(A) • For
$$k \in \mathbb{Z}$$
 and $z \in \mathbb{C}$: $\exp(kz) = (\exp(z))^k$.
• For $z \in \mathbb{C}$: $\sin(z + 2\pi) \bigoplus \sin(z)$, $\cos(z + 2\pi) \bigoplus \cos(z)$, $\exp(z + 2\pi i) \stackrel{\sim}{=} \exp(z)$.
• For $z \in \mathbb{C}$: $\sin^2(z) + \cos^2(z) = 1$.
(b) • For $w, z \in \mathbb{C}$: $\exp(w + z) = \exp(w) \exp(z)$.
Proof: We know that the equalities hold for
 $Z_1 W \in \mathbb{R}$.
(A) $\exp(kz)$ is analytic on (L, so is $(\exp(z))^k$,
they agree on \mathbb{R}_1 which is not discrete
 $\implies \exp(kz) = (\exp(z))^k$ is on (L)
(b) for $w \in \mathbb{R}$: $\forall z \in \mathbb{R}$: $\exp(w + z) = \exp(w) \exp(z)$
 $\implies \forall z \in \mathbb{C}$: $\lim_{x \to \infty} (w + z) = \exp(w) \exp(z)$
 $\implies \forall z \in \mathbb{C}$: $\lim_{x \to \infty} (w + z) = \exp(w) \exp(z)$
 $\implies \forall z \in \mathbb{C}$: $\lim_{x \to \infty} (w + z) = \exp(w) \exp(z)$
 $\implies \forall z \in \mathbb{C}$: $\lim_{x \to \infty} (w + z) = \exp(w) \exp(z)$

Combining analytic continuations

Proposition

Let $X \subseteq \mathbb{C}$ be a set which is not discrete, let $f: X \to \mathbb{C}$ be a function, let Ω_1 and Ω_2 be two domains, with $X \subseteq \Omega_1 \cap \Omega_2$. Let g_1 and g_2 be the analytic continuation of f to Ω_1 and Ω_2 , respectively. If $\Omega_1 \cap \Omega_2$ is connected, then g_1 and g_2 agree on $\Omega_1 \cap \Omega_2$, and together form an analytic continuation of f to $\Omega_1 \cup \Omega_2$.

Note: The assumption that $\Omega_1 \cap \Omega_2$ is connected is essential.

Goal: Let us look for an inverse function to $f(z) = z^2$.

Goal: Let us look for an inverse function to $f(z) = z^2$. **Recall**: If f is analytic in $z_0 \in \mathbb{C}$ and $f'(z_0) \neq 0$, then f is maps a neighborhood $\mathcal{N}_{\leq \varepsilon}(z_0)$ of z_0 bijectively to an open set Ω , and its inverse function $f^{\langle -1 \rangle} : \Omega \to \mathcal{N}_{\leq \varepsilon}(z_0)$ is analytic in $f(z_0)$. $(z) = 2z \neq 0$ on (-903) = 3i continues $g \neq z$ $SZ_1 = 3ig_1(-1) = i$ $\chi(\Lambda) = \Lambda$ τ είφ φε(ο, π] gr continues y f(2)= 2² to l2 => g2(-1)=-i g(z)= V2

Goal: Let us look for an inverse function to $f(z) = z^2$.

Recall: If f is analytic in $z_0 \in \mathbb{C}$ and $f'(z_0) \neq 0$, then f is maps a neighborhood $\mathcal{N}_{<\varepsilon}(z_0)$ of z_0 bijectively to an open set Ω , and its inverse function $f^{\langle -1 \rangle} : \Omega \to \mathcal{N}_{<\varepsilon}(z_0)$ is analytic in $f(z_0)$.

Conclusion: $f(z) = z^2$ has an analytic inverse in a neighborhood of any $z_0 \neq 0$, but this cannot be analytically continued to $\mathbb{C} \setminus \{0\}$.

Goal: Let us look for an inverse function to $f(z) = z^2$.

Recall: If f is analytic in $z_0 \in \mathbb{C}$ and $f'(z_0) \neq 0$, then f is maps a neighborhood $\mathcal{N}_{<\varepsilon}(z_0)$ of z_0 bijectively to an open set Ω , and its inverse function $f^{\langle -1 \rangle} : \Omega \to \mathcal{N}_{<\varepsilon}(z_0)$ is analytic in $f(z_0)$.

Conclusion: $f(z) = z^2$ has an analytic inverse in a neighborhood of any $z_0 \neq 0$, but this cannot be analytically continued to $\mathbb{C} \setminus \{0\}$.

Definition

For any $z \in \mathbb{C} \setminus (-\infty, 0]$ we let \sqrt{z} denote the unique number w with $\Re(w) > 0$ satisfying $w^2 = z$.

$$\frac{\sqrt{2}}{(1+2)^{2}}$$

Fact (Pringsheim, Vivanti; 1890's)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence $\rho \in (0, +\infty)$, and let us define $f : \mathbb{N}_{<\rho}(0) \to \mathbb{C}$ by $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Then there is at least one point w with $|w| = \rho$ such that f has no analytic continuation to any domain containing w. If we additionally assume that $a_n \ge 0$ for all n, then the conclusion holds for $w = \rho$.

Example