Analytic combinatorics

Lecture 5

April 7, 2021

Recall: A complex function f is analytic in $z_{0} \in \mathbb{C}$, if it is equal to the sum of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ on a neighborhood of z_{0}.

Recall: A complex function f is analytic in $z_{0} \in \mathbb{C}$, if it is equal to the sum of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ on a neighborhood of z_{0}.

Definition

Let $\Omega \subseteq \mathbb{C}$ be an open set. We say that f is analytic on Ω, if f is analytic in every point of Ω.

Global properties of analytic functions

Recall: A complex function f is analytic in $z_{0} \in \mathbb{C}$, if it is equal to the sum of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ on a neighborhood of z_{0}.

Definition
Let $\Omega \subseteq \mathbb{C}$ be an open set. We say that f is analytic on Ω, if f is analytic in every point of Ω.

Proposition
Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $\rho>0$. Define a function $f: \mathcal{N}_{<\rho}(0) \rightarrow \mathbb{C}$ by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then f is analytic on $\mathcal{N}_{<\rho}(0)$.
Moreover, for $z_{0} \in \mathcal{N}_{<\rho}(0)$, the series expansion of f with center z_{0} has radius of convergence at least $\rho-\left|z_{0}\right|$.

Analytic continuation

Definition
Let $f: M \rightarrow \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \rightarrow \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M, f(z)=g(z)$, and
- g is analytic on Ω.

Example:

$$
\begin{aligned}
& x^{3}+\ldots 1, \rho=1, \quad f(z)=1+z+z^{2}+\ldots=\frac{1}{1-z} \\
& g(z)=\frac{1}{1-z} \quad\left(\begin{array}{l}
\text { on } \\
n_{2}(0) \\
\infty
\end{array}\right)=M \\
& z \in\left(\mathbb{1}\{1\} \quad f(z)=\sum_{k=0}^{\infty} b_{k}\left(z-z_{\infty}\right)^{k}\right. \\
& \begin{array}{l}
g \text { is analytic } k=0 \\
\text { on } \mathbb{C}\{1\} \text { may converse for }
\end{array} \\
& z \in M_{\leq 1}(0) \\
& \text { because }
\end{aligned}
$$ in every $M_{<\varepsilon}(1) \quad 1-z$ is analytic on \mathbb{A}

Definition

Let $f: M \rightarrow \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \rightarrow \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M, f(z)=g(z)$, and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is ...

- open if for every $z \in X$ there is an $\varepsilon>0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;

Definition

Let $f: M \rightarrow \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \rightarrow \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M, f(z)=g(z)$, and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is ...

- open if for every $z \in X$ there is an $\varepsilon>0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;
- disconnected if there are two disjoint open sets O_{1} and O_{2} such that $O_{1} \cap X \neq \emptyset$, $O_{2} \cap X \neq \emptyset$, and $X \subseteq O_{1} \cup O_{2}$; otherwise, the set X is connected;

Definition

Let $f: M \rightarrow \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \rightarrow \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M, f(z)=g(z)$, and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is ...

- open if for every $z \in X$ there is an $\varepsilon>0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;
- disconnected if there are two disjoint open sets O_{1} and O_{2} such that $O_{1} \cap X \neq \emptyset$, $O_{2} \cap X \neq \emptyset$, and $X \subseteq O_{1} \cup O_{2}$; otherwise, the set X is connected;
- a domain if it is nonempty, open and connected;

Definition

Let $f: M \rightarrow \mathbb{C}$ be a function, let Ω be an open set with $M \subseteq \Omega$. A function $g: \Omega \rightarrow \mathbb{C}$ is an analytic continuation of f if

- for every $z \in M, f(z)=g(z)$, and
- g is analytic on Ω.

Definition

A set $X \subseteq \mathbb{C}$ is ...

- open if for every $z \in X$ there is an $\varepsilon>0$ such that $\mathcal{N}_{<\varepsilon}(z) \subseteq X$;
- disconnected if there are two disjoint open sets O_{1} and O_{2} such that $O_{1} \cap X \neq \emptyset$, $O_{2} \cap X \neq \emptyset$, and $X \subseteq O_{1} \cup O_{2}$; otherwise, the set X is connected;
- a domain if it is nonempty, open and connected;
- discrete if for every $z \in X$ there is $\varepsilon>0$ such that $\mathcal{N}_{<\varepsilon}(z) \cap X=\{z\}$.

.

$$
\begin{aligned}
& \text { ex: } \\
& X=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\} \\
& \text { is discrete } \\
& X 0\{0\} \text { is not discrete }
\end{aligned}
$$

Global analytic uniqueness

Recall: If f is analytic in $z \in \mathbb{C}$ with $f(z)=0$, then either f is identically zero on a neighborhood of z, or f is never zero on a punctured neighborhood of z.

Proposition (Global analytic uniqueness)
Let f be a function analytic on a domain Ω. Then the set $Z_{f}=\{z \in \Omega ; f(z)=0\}$ is either discrete or equal to Ω.

$$
\left\{\begin{array}{l}
\text { Proof: } \\
\sigma_{1}:=\left\{z \in \Omega: f \text { is identically } 0 \text { on a } n_{<\varepsilon}(z)\right. \\
\text { for } \varepsilon>0\}
\end{array}\right\} \begin{aligned}
& \sigma_{2}:=\left\{z \in \Omega: \begin{array}{l}
\text { is never } 0 \text { on a } M_{<\varepsilon}^{*}(z) \text {, for } \\
\rightarrow \\
\\
\text { some } \varepsilon>0\}
\end{array}\right. \\
& \text { clearly } \sigma_{1} \cup \sigma_{2} \cap \sigma_{2}=\phi
\end{aligned}
$$

But Ω is connected, Mes hence

$$
\sigma_{1}=\phi \text { or } \sigma_{2}=\phi .
$$

If $\sigma_{1}=\phi_{1}$, then $\sigma_{2}=\Omega$ and $\left.z_{j}=\{z \in \Omega\}(x)=0\right\}$ is discrete (possibly empty)

If $\sigma_{2}=\phi_{1}$ then $\sigma_{1}=\Omega$ and $z_{f}=\Omega$. \square

Proposition (Global analytic uniqueness)
Let f be a function analytic on a domain Ω. Then the set $Z_{f}=\{z \in \Omega ; f(z)=0\}$ is either discrete or equal to Ω.

Proposition (Global analytic uniqueness)
Let f be a function analytic on a domain Ω. Then the set $Z_{f}=\{z \in \Omega ; f(z)=0\}$ is either discrete or equal to Ω.

Corollary
Let f and g be two functions analytic on a domain Ω. Then the set $\{z \in \Omega ; f(z)=g(z)\}$ is either discrete or equal to Ω.

Global analytic uniqueness - consequences

Proposition (Global analytic uniqueness)
Let f be a function analytic on a domain Ω. Then the set $Z_{f}=\{z \in \Omega ; f(z)=0\}$ is either discrete or equal to Ω.

Corollary
Let f and g be two functions analytic on a domain Ω. Then the set $\{z \in \Omega ; f(z)=g(z)\}$ is either discrete or equal to Ω.

Corollary
Let $X \subseteq \mathbb{C}$ be a set which is not discrete, let $f: X \rightarrow \mathbb{C}$ be a function, let Ω be a domain containing X as a subset. Then f has at most one analytic continuation of to Ω.

$$
\text { If } \mathrm{g}: \Omega \rightarrow \mathbb{C} \text { and }
$$

$g_{2}: \Omega \rightarrow \mathbb{C}$ are both an analytic cont. of \&o
they agree on X, hence they agree on Ω

Definition

$$
\begin{aligned}
e^{z}=\exp (z) & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\sin (z) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
\cos (z) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}
\end{aligned}
$$

Definition

$$
\begin{aligned}
\exp (z) & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\sin (z) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
\cos (z) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}
\end{aligned}
$$

Observe:

- The three series above have infinite radius of convergence, hence the definitions are applicable to every $z \in \mathbb{C}$, and the three functions are analytic on \mathbb{C}.

Definition

$$
\begin{aligned}
\exp (z) & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\sin (z) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
\cos (z) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}
\end{aligned}
$$

Observe:

- The three series above have infinite radius of convergence, hence the definitions are applicable to every $z \in \mathbb{C}$, and the three functions are analytic on \mathbb{C}.
- For any $z \in \mathbb{C}$, we have

$$
\begin{aligned}
\cos (z) & =\frac{\exp (i z)+\exp (-i z)}{2} \\
\sin (z) & =\frac{\exp (i z)-\exp (-i z)}{2 i} \\
\exp (i z) & =\cos (z)+i \sin (z)
\end{aligned}
$$

Proposition
The following holds:
a)- For $k \in \mathbb{Z}$ and $z \in \mathbb{C}: \exp (k z)=(\exp (z))^{k}$.

$$
\exp (i z)=\cos (z)+i \sin (z)
$$

- For $z \in \mathbb{C}: \sin (z+2 \pi) \ominus \sin (z), \cos (z+2 \pi) \ominus \cos (z), \exp (z+2 \pi i)=\exp (z)$.
- For $z \in \mathbb{C}: \sin ^{2}(z)+\cos ^{2}(z)=1$.
b) - For $w, z \in \mathbb{C}: \underbrace{\exp (w+z)}=\exp (w) \exp (z)$.

Proof: We know that the equalities hold for $z_{1} w \in \mathbb{R}$.
a) $\exp (k z)$ is analytic on $\left(\mathbb{1}\right.$, so is $(\exp (z))^{k}$, they agree on \mathbb{R}_{1} which is not discrete $\Rightarrow \exp (k z)=(\exp (z))^{k}$ in on \mathbb{C}
b) for $w \in \mathbb{R}: \forall z \in \mathbb{R}: \exp (w+z)=\exp (w) \exp (z)$

$$
\Rightarrow \forall z \in \mathbb{C}:
$$

for fixed $z: \forall w \in \mathbb{R}=$ holds $\Rightarrow \forall w \in \mathbb{C}: \neq$ holds

Combining analytic continuations

Proposition
Let $X \subseteq \mathbb{C}$ be a set which is not discrete, let $f: X \rightarrow \mathbb{C}$ be a function, let Ω_{1} and Ω_{2} be two domains, with $X \subseteq \Omega_{1} \cap \Omega_{2}$. Let g_{1} and g_{2} be the analytic continuation of f to Ω_{1} and Ω_{2}, respectively. If $\Omega_{1} \cap \Omega_{2}$ is connected, then g_{1} and g_{2} agree on $\Omega_{1} \cap \Omega_{2}$, and together form an analytic continuation of f to $\Omega_{1} \cup \Omega_{2}$.

Note: The assumption that $\Omega_{1} \cap \Omega_{2}$ is connected is essential.

$\Omega_{1} \cap \Omega_{2}$ connected
\Rightarrow it is a dolnain
\Rightarrow las at most one continuation to

$$
a_{1} \cap L_{2} \Rightarrow g_{1}
$$

and g_{2} agree on $\Omega_{1} \cap \Omega_{2}$

Goal: Let us look for an inverse function to $f(z)=z^{2}$.

Complex square root
Goal: Let us look for an inverse function to $f(z)=z^{2}$.
Recall: If f is analytic in $z_{0} \in \mathbb{C}$ and $f^{\prime}\left(z_{0}\right) \neq 0$, then f is maps a neighborhood $\mathcal{N}_{<\varepsilon}\left(z_{0}\right)$ of z_{0} bijectively to an open set Ω, and its inverse function $f^{\langle-1\rangle}: \Omega \rightarrow \mathcal{N}_{<\varepsilon}\left(z_{0}\right)$ is analytic in $f\left(z_{0}\right)$.

$$
\begin{aligned}
& f^{f(-1): \Omega \rightarrow} \rightarrow N_{<\varepsilon}\left(z_{0}\right) \text { is analytic in } f\left(z_{0}\right) . \\
& f(z)=2 z \neq 0 \text { on } \mathbb{C} \backslash\left\} \left\lvert\, \begin{array}{l}
g_{1} \\
\Omega=1: \\
\Omega(1)=1
\end{array}\right., \quad l e^{i \varphi}, \varphi \in[0, \pi]\right.
\end{aligned}
$$

g_{1} continues g to

$$
\Omega_{1} \Rightarrow g_{1}(-1)^{g}=i
$$

$$
f\left(e^{i}\right)=-\frac{x}{e^{1 \varphi}}
$$

$$
f(i)=-1
$$

$$
\begin{aligned}
& g(z)=" \sqrt{3} " \\
& f(z)=z^{2} \text { to } l_{2} \Rightarrow g_{2}(-1)=-i
\end{aligned}
$$

Complex square root

Goal: Let us look for an inverse function to $f(z)=z^{2}$.
Recall: If f is analytic in $z_{0} \in \mathbb{C}$ and $f^{\prime}\left(z_{0}\right) \neq 0$, then f is maps a neighborhood $\mathcal{N}<\varepsilon\left(z_{0}\right)$ of z_{0} bijectively to an open set Ω, and its inverse function $f^{\langle-1\rangle}: \Omega \rightarrow \mathcal{N}_{<\varepsilon}\left(z_{0}\right)$ is analytic in $f\left(z_{0}\right)$.
Conclusion: $f(z)=z^{2}$ has an analytic inverse in a neighborhood of any $z_{0} \neq 0$, but this cannot be analytically continued to $\mathbb{C} \backslash\{0\}$.

Goal: Let us look for an inverse function to $f(z)=z^{2}$.
Recall: If f is analytic in $z_{0} \in \mathbb{C}$ and $f^{\prime}\left(z_{0}\right) \neq 0$, then f is maps a neighborhood $\mathcal{N}_{<\varepsilon}\left(z_{0}\right)$ of z_{0} bijectively to an open set Ω, and its inverse function $f^{\langle-1\rangle}: \Omega \rightarrow \mathcal{N}_{<\varepsilon}\left(z_{0}\right)$ is analytic in $f\left(z_{0}\right)$.
Conclusion: $f(z)=z^{2}$ has an analytic inverse in a neighborhood of any $z_{0} \neq 0$, but this cannot be analytically continued to $\mathbb{C} \backslash\{0\}$.

Definition

For any $z \in \mathbb{C} \backslash(-\infty, 0]$ we let \sqrt{z} denote the unique number w with $\Re(w)>0$ satisfying $w^{2}=z$.

Prigsheim's theorem

Fact (Pringsheim, Vivanti; 1890's)
Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence $\rho \in(0,+\infty)$, and let us define $f: \mathcal{N}_{<\rho}(0) \rightarrow \mathbb{C}$ by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then there is at least one point w with $|w|=\rho$ such that f has no analytic continuation to any domain containing w. If we additionally assume that $a_{n} \geq 0$ for all n, then the conclusion holds for $w=\rho$.

