NMAI059 Probability and statistics 1 Class 6

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Random vectors

Conditional distribution

Continuous random variables

Particular continuous distributions and their parameters

What have we learned

• Joint PMF: $p_{X,Y}(x,y) = P(X = x \& Y = y)$

Example: multinomial distribution

- Marginal PMF: $p_X(x) = \sum_{y \in Im(y)} p_{X,Y}(x,y)$
- Example: coupling

ŀ

UM/que

- ► X, Y are independent iff $\sqrt{P(X = x \& Y = y)} = P(X = x)P(Y = y)$ That is, iff $p_{X,Y}(x, y) = p_X(x)p_Y(y)$.
- If X, Y are independent then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.
- $\blacktriangleright \ \mathbb{E}(g(X,Y)) = \sum_{x \in ImX} \sum_{y \in ImY} \underline{g(x,y)} P(X=x,Y=y)$
- ► Linearity of expectation For any r.v.s X, Y and $a, b \in \mathbb{R}$ we have $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$.

convolution formula

$$\underline{P(X+Y=n)} = \sum_{k \in Im(X)} \underline{P(X=k,Y=n-k)}$$

Overview

Random vectors

Conditional distribution

Continuous random variables

Particular continuous distributions and their parameters

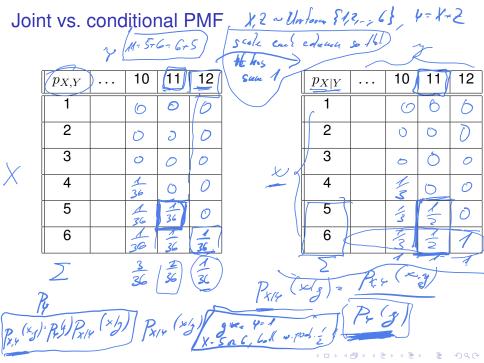
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Conditional PMF

- X, Y discrete random variables on $(\Omega, \mathcal{F}, P), A \in \mathcal{F}$
 - ▶ p_{X|A}(x) := P(X = x | A) example: X is outcome of a roll of a die, A = we got an even number
 - ► $p_{X|Y}(x|y) = P(X = x | Y = y)$ example: X, Z is an outcome of two independent die rolls, Y = X + Z.

 $p_{X|Y}(6|10) =$

 \blacktriangleright $p_{X|Y}$ from $p_{X,Y}$: $\frac{P(X, \varphi)}{P(X, \varphi)} = \frac{P(X, \varphi, \xi, \gamma, \varphi)}{P(Y, \varphi)} = \frac{P(X, \varphi, (\varphi, \varphi))}{P(Y, \varphi)}$ $\frac{P(X, \varphi, (\varphi, \varphi))}{P(Y, \varphi)} = \frac{P(X, \varphi, (\varphi, \varphi))}{P(Y, \varphi)}$



Ex. (Spirity the Porson) X~Pors ()) # energies in a day () = 2 e 2 e 2 (17) e Nors ()) # energies in a day () $e = \frac{(p-1)^{e}}{(k!)} e^{-p^{2}}$ Y is the # of spaces array these X enails - Teach of the enails has part. p to be a span (redshif fothers) 7= X-Y - #1 nou-spans (hans) any the X can's [V ~ Pois (pd)) PHX (k/n) = P(Y=k/X=n) = (brum desto.) = (m) pt(1-p) the Osken $P_{X}(n) - P(X=n) = (P_{m,See}) = \frac{\lambda^{n}}{n!} e^{-\lambda} \frac{n!}{k!(n+1)!} \sqrt{n e M_{6}} \quad 0 \le k \le n$ $\frac{P_{k+1}(n,k) = p_{k}(n) \cdot P_{k+k}(k|n) = \frac{\pi^{n}}{n!} e^{-\lambda} {n \choose k} p^{k}(1-p) = \frac{\pi^{n}}{1-k} e^{-\lambda} \frac{p^{k}}{(1-k)!} \frac{1}{(n-k)!}$ $P_{t}(k) = \sum_{n=k}^{\infty} P_{t+1}(n,k) = \sum_{n=k}^{\infty} \lambda e^{\frac{1}{p}} \frac{p^{t}}{k!} \frac{(n-k)!}{(n-k)!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac{q_{n}}{(n-k)!} \frac{q_{n}}{k!} \sum_{\substack{n=k \\ n \geq k}} \lambda e^{\frac{1}{p}} \frac{q_{n}}{k!} \frac$ l=11-4 20 Z~Pois (4+)A) & 4,2 ore indep. *

P(4= k & 2= n-k) = P(+= k & K=n) = 1"e^{-1} 2". (1-p) _____ (z) P(Y=k) 1 7 7 7) e (1-p)A Ras (2p) (4-1 P(2-0-4) 2 Pors ((- P)) -? Y, ? are suclopeded

Tuo envelge paredox (X,Y 70) X C2K Y C2K X=2Y or Y=2X, with equal from the second Take X , find X. X. Then either 4= 2 a 4= 2KI E(V/X=w)= 2.2+2.20- = = × × So, wheteve value so, we should surface! We do at me the know so! THIS strest BE weathe. Problem 1) We dod and specify joint Att. With pubs. 2" we put 2th at we env. 2 2 tet a la the other $P_{XY}(2,2) = P_{XY}(2,2) = \frac{1}{2} 2^{-k} (k=1,3,...)$ It X-1 their neccessary 4-2, 5 is shall sate .

 $P_{X,s} \underbrace{(2,2^{*-})}_{P_{X,s}} = P_{X,s} \underbrace{(2,2^{*-})}_{2} \cdot \underbrace{$ we specid joint PHEF It X=2", what shoul we do? not <u>Y=2</u>^{H+1} w.p.ch. P.x. (2,2) = = = 2^{-(H-2)} 2^{-(H-2)} P(X=2) = [P(X=2)] = [$= 2^{n+1} \frac{2^{n}}{\frac{3}{4}} + 2^{n-1} \frac{1}{\frac{3}{4}} \frac{2^{2n}}{\frac{3}{4}} = \frac{1}{2^{2n}} \frac{1}{\frac{3}{4}} \frac{1}{\frac{3}{4}$ $= 2^{m/2} = 2^$

Overview

Random vectors

Conditional distribution

Continuous random variables

Particular continuous distributions and their parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

General random variable

Definition

Random variable on (Ω, \mathcal{F}, P) is a mapping $X : \Omega \to \mathbb{R}$, such that for each $x \in \mathbb{R}$

 $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$ the weat he Maesure P(X = xx) discrete r.v. is a r.v. $P(X = x) = \sum_{\substack{x' \in X \\ x' \in X \\ x'$ ◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ● ●

CDF

Definition

Cumulative distribution function, CDF of a r.v. X is a function

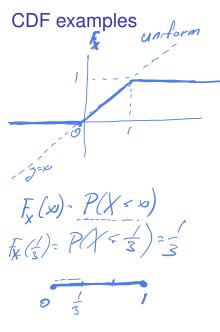
$$F_X(x) := P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• F_X is a nondecreasing function

$$\blacktriangleright \lim_{x \to -\infty} F_X(x) = 0$$

- $\blacktriangleright \lim_{x \to +\infty} F_X(x) = 1$
- \blacktriangleright F_X is right-continuous



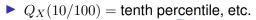
here is all the entran { Im (4) - 50,15

Quantile function

For a r.v. X we define its quantile function $Q_X : [0,1] \to \mathbb{R}$ by

$$Q_X(p) := \min \left\{ x \in \mathbb{R} : p \le F_X(x) \right\}$$

- If F_X is continuous and increasing then $Q_X = F_X^{-1}$.
- $Q_X(1/2) =$ median (watch out if F_X is not strictly F(x)=2 .P(x = m). increasing!)



Q(=), q(=), q(=)

Continuous random variable

Definition

R.v. X is called <u>continuous</u>, if there is <u>nonnegative</u> real function f_X such that $f_X \in \mathbb{R}$

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt.$$

(Sometimes such X is said to be absolutely continuous.) Function f_X is called the <u>probability</u> density function, PDF of X.

- ► Alternatively: we pick a point from the probability space corresponding to the area under graph of f nonnegative function with $\int_{-\infty}^{\infty} f = 1$.
- Let (X, Y) denote the coordinates of the point.

Torenty: P(X=x)=P((X,4)=Sx)= aver of Sx = Stil

• Then X is a random variable with PDF f.

aut area

Using density " < / Theorem Let X be a <u>continuous</u> r.v. with PDF_{f_X} . Then 1. P(X = x) = 0 for every $x \in \mathbb{R}$. 2. $P(a \leq X \leq b) = \int_a^b f_X(t) dt$ for every $a, b \in \mathbb{R}$. Proct P((X, 4) E S \ Sa) = aver of S' Sa - (f P(a=X=6)=lin P(a-f<X=6) $f = \int f$ = l'm)

Expectation of a continuous r.v.

Definition

Consider a continuous r.v. X with PDf f_X . Then its expectation (expected value, mean) is denoted by $\mathbb{E}(X)$ and defined by

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \ f_X(x) dx,$$

whenever the integral is defined; that is unless it is a type $\infty - \infty$. TODO EXPLAIN?

An analogy with computing a center of mass of a pole from a formula for its density.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Continuous LOTUS

Theorem (LOTUS)

Consider a continuous r.v. X with density f_X and a real function g. Then we have

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

whenever the integral is defined. (We skip the proof.)

Variance of a continuous r.v.

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$

Writing $\mu = \mathbb{E}(X)$, we have

$$var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●