
Nearfields

Definition of nearfield and commutativity. By definition, (N,+, ·, 0, 1) is a
nearfield if (N,+, 0) and (N∗, ·, 1) are groups, x(y+z) = xy+xz for all x, y, z ∈ N ,
and the 2-element structure with xy = y is avoided. To avoid it, it may be assumed,
e.g., that 0 · 1 = 0.

In every nearfield x+y = y+x, for every x and y. The proof of commutativity is
nontrivial in the general case. In finite case the commutativity follows from the fact
that finite nearfields are quasifields. Another proof of commutativity in the finite
case relies upon the fact that x 7→ cx is an automorphism of (N,+, 0) for every
c ∈ N∗. This means that c = c · 1 is an automorphic image of the element 1. Hence
all elements of N∗ are of the same order. This is possible if and only if each element
of N∗ is of a prime order p. Therefore (N,+, 0) is a p-group. A p-group always
contains a nontrivial center. A nontrivial element of this center is an automorphic
image of 1. Hence 1 belongs to the center. Each element of N∗ is thus central.
This proves that the additive group of a finite nearfield is an elementary abelian
p-group, p a prime.

Further on the additive group of (N,+) will always be considered to be commu-
tative.

Opposite elements in a nearfield. As observed earlier, 0a = a0 = 0 and
a(−b) = −ab in every nearfield N . In a nearfield a + b = b + a. Here we shall
show that (−a)b = −ab for all a, b ∈ N .

Lemma. An element a ∈ N fulfils a2 = 1 if and only if a = ±1.

Proof. (−1)(−1) = −(−1) = 1. If a2 = 1, then a(a+1) = a2 +a = 1+a = 1(a+1).
If a+ 1 6= 0, then a = 1. If a+ 1 = 0, then a = −1. �

Lemma. Every a ∈ N fulfils (−1)a = −a.

Proof. This is clear if a = 0. Assume a 6= 0 and consider b ∈ N∗ such that ab = 1.
Then ba = 1 and (a · (−1) · b)(a · (−1) · b) = a · (−1) · (−1) · b = a · b = 1. By the
lemma, a · (−1) · b = ±1. If a · (−1) · b = 1 = ab, then −a = a(−1) = a. In such
a case 0 = a + a and 0 = b(a + a) = ba + ba = 2. That implies −1 = 1. Hence
a · (−1) · b = −1 in every case. This yields a · (−1) = (−1)a, by multiplying by a
on the right. Hence (−1)a = a(−1) = −a. �

To finish note that −ab = (−1)ab = (−1)a · b = (−a)b, for all a, b ∈ N .

Few notions from permutation groups. Let G be a permutation group upon
Ω. Recall that Gα = {g ∈ G; g(α) = α}, for all α ∈ Ω. The group is transitive
if for all α, β ∈ Ω there exists g ∈ G such that g(α) = β. Note that for G to be
transitive it suffices that there exists α ∈ Ω such that for each β ∈ Ω there exists
g ∈ G such that g(α) = β.

The group G is said to be 2-transitive if for all α, β, γ, δ ∈ Ω such that α 6= β
and γ 6= δ there exists g ∈ G such that g(α) = γ and g(β) = δ. Note that for G to
be 2-transitive it suffices that there exist α, β ∈ Ω, α 6= β, such that for all γ, δ ∈ Ω,
γ 6= δ, there exists g ∈ G such that g(α) = γ and g(β) = δ.

If G is 2-transitive, and there exists only one g ∈ G such that g(α) = γ and
g(β) = δ, then g is said to be sharply 2-transitive.

Note that the similar notion of sharp 1-transitivity coincides with the notion of
a regular permutation group. Note also that a 2-transitive permutation group is
sharply 2-transitive if and only if Gα,β = 1, whenever α, β ∈ Ω and α 6= β.

The permutation group G is said to be a Frobenius group if it is transitive, but
not regular, and fulfils Gα,β = 1 whenever α, β ∈ Ω and α 6= β. By a well known
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theorem a finite Frobenius group contains a normal subgroup that consists of the
identity mapping and of all mappings g ∈ G such that g(α) = α for no α ∈ Ω (the
regular permutations of G). This subgroup is normal and is called the Frobenius
kernel. Each sharply 2-transitive group is a Frobenius group. The converse is not
true.

Affine mappings of a nearfield. Let N be a nearfield. Denote by Aff(N) the
set of all mappings x 7→ ax+ b, where a ∈ N∗ and b ∈ N . The set Aff(N) forms a
group and this group is sharply 2-transitive.

As explained above, to prove this it suffices to show that for c, d ∈ N , c 6= d,
there exist a unique affine mapping x 7→ ax + b that sends 0 upon c and 1 upon
d. These assumptions mean that c = a0 + b = b and d = a1 + b = a + b. Setting
a = d− c and b = c thus does the job.

Finite nearfields are equivalent to sharply 2-transitive groups. Let G be a
sharply 2-transitive permutation group upon a finite set N . Choose an element of
N and denote it by 0. The Frobenius kernel of G is a regular group upon N . Hence
N may be considered as a group (N,+, 0), where + is defined in such a way that
the Frobenius kernel coincides with the set of left translations La, a ∈ N . (The
way how to define + is described in the passage about regular group.)

The Frobenius kernel is a normal subgroup of G. Hence if g ∈ G, then for each
a ∈ N there exists b ∈ N such that gLag

−1 = Lb. If g ∈ G0, then gLa(0) = g(a) =
b = Lb(0) = Lbg(0). Thus gLag

−1 = Lg(a) for each g ∈ G0 and a ∈ N .
Choose a nonzero element of N and denote it by 1. Define multiplication upon

N so that 0a = 0 and ab = ϕa(b) whenever a, b ∈ N , a 6= 0 and ϕa is the unique
element of G0 that sends 1 upon a. Put N∗ = N \ {0} and denote by ϕ∗

a the
restriction of ϕa to N∗. By the definition ab = ϕ∗

a(b) for all a, b ∈ N∗. The group
G0 consists of all ϕa, a ∈ N∗. Permutations ϕ∗

a coincide with left translations of
(N∗, ·). That makes (N∗, ·) a group. Note that · is defined in accordance with the
general procedure of deriving an abstract group from a regular group. The neutral
element of N∗ is equal to 1 since ϕ1 = idN .

The left distributive law a(b+c) = ab+ac clearly holds if a = 0. Assume a ∈ N∗.
Then a(b+ c) = ϕaLb(c) = Lϕa(b)ϕa(c) = Lab(ac) = ab+ ac.

Dickson nearfields. Finite nearfields are thus equivalent to sharply 2-transitive
permutation groups. All such groups are known. Their classification belongs
to Zassenhaus. Here it will not be discussed. The simplest example of proper
nearfields (that is nearfields that do not satisfy the right distributive law) are Dick-
son nearfields.

A Dickson nearfield is obtained by replacing the multiplication · of Fq2 (the finite
field of order q2), q odd, by multiplication ◦ that is defined as follows:

a ◦ b =

{
ab if a is a square;

abq if a is a nonsquare.

Exercise. Show that (Fq2 ,+, ◦, 0, 1) is a nearfield, for any q > 1 that is a power of
odd prime.

Exercise. The smallest order of a Dickson nearfield (and, in fact, of any proper
nearfield) is 9. Prove that (F∗

9, ◦) is isomorphic to Q8, the group of quaternions.
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Quasigroups from nearfields. Let (N,+, ·, 0, 1) be a nearfield. Choose an ele-
ment c ∈ N , c /∈ {0, 1}, and define a binary operation ∗c upon N by

x ∗c y = x+ (y − x)c for all x, y ∈ N.
Suppose that a, b ∈ N .

a ∗c y = b ⇔ a+ (y−a)c = b ⇔ y − a = (−a+ b)c−1, and

x ∗c a = b ⇔ x+ (a−x)c = b ⇔ (−a+ x) + (a− x)(c) = −a+ b

⇔ (a− x)(−1) + (a− x)(c) = −a+ b ⇔ (a− x)(−1 + c) = −a+ b

⇔ a− x = (−a+ b)(−1 + c)−1.

Both equations thus possess a unique solution. That makes (N, ∗c) a quasigroup.
This quasigroup is idempotent since a ∗c a = a+ (a− a)c = a+ 0c = a.

Theorem. Let N be a nearfield, c ∈ N , c /∈ {0, 1}. Then Aff(N) ≤ Aut(N, ∗c).

Proof. The group Aff(N) is generated by mappings x 7→ x+v, v ∈ N , and mappings
x 7→ ux, u ∈ N∗. The proof uses the commutativity of +. If x, y ∈ N , then
(x+ v) ∗c (y + v) = x+ (y − x)c+ v = (x ∗c y) + v since (y + v)− (x+ v) = y − x.
Furthermore, ux ∗c uy = ux + (uy − ux)c = ux + u(y − x)c = u(x + (y − x)c) =
u(x ∗c y). �

A lemma of general nature. Let (Q, ∗) be an idempotent quasigroup. If x, y ∈ Q
are such that (x, x, y) or (y, x, x) is an associative triple, then x = y.

Proof. Assume x ∗ (x ∗ y) = (x ∗ x) ∗ y. Since (x ∗ x) ∗ y = x ∗ y there must be
x ∗ y = y = y ∗ y. Thus x = y. �

Flexibility. A binary operation · is said to be flexible if it fulfils the flexible law
xy · x = x · yx.

Let N be a nearfield, and c ∈ N \ {0, 1}. The aim now is to prove that ∗c is
flexible if and only if c(1− c) = (1− c)c. If c(1− c) 6= (1− c)c then (a, b, a) is never
associative if a, b ∈ N and a 6= b.

First note if (Q, ·) is a quasigroup and α ∈ Aut(Q), then (a, b, c) ∈ Q3 is associa-
tive if and only if (α(a), α(b), α(c)) is associative. This is because α(a)α(b) ·α(c) =
α(ab · c) and α(a) · α(b)α(c) = α(a · bc).

Consider a, b ∈ N , a 6= b. Since Aff(N) is 2-transitive, there exists α ∈ Aff(N)
such that α(0) = a and α(1) = b. Recall that Aff(N) ≤ Aut(N, ∗c). This means
that (a, b, c) is associative if and only if (0, 1, 0) is associative.

Plugging x = 0 into x ∗c y = x + (y − x)c gives 0 ∗c y = yc. Furthermore,
x ∗c 0 = x+ (−x)c = x1 + x(−c) = x(1− c). Hence

0 ∗c (1 ∗c 0) = (1 ∗c 0)c = (1− c)c, and

(0 ∗c 1) ∗c 0 = c ∗c 0 = c(1− c).

Flexibility in Dickson nearfields. The operation of the Dickson nearfield upon
Fq2 is denoted by ◦. For i, j ∈ {0, 1} set i = 0 if c is square and i = 1 if it is a
nonsquare. Similarly set j = 0 if 1− c is a square, and j = 1 othewise. Then

ij 00 01 10 11
c ◦ (1− c) c(1− c) c(1− c) c(1− c)q c(1− c)q = c− cq+1

(1− c) ◦ c c(1− c) cq(1− c) c(1− c) cq(1− c) = cq − cq+1

The table shows that if c is a nonsquare or 1− c is a nonsquare, then c ◦ (1− c) =
(1 − c) ◦ c implies c = cq or 1 − c = (1 − c)q. Now, Fq is a subfield of Fq2 that
consists of all a ∈ Fq2 that fulfil aq = a. Since each element of Fq is a square in
Fq2 , the equality c ◦ (1 − c) = (1 − c) ◦ c holds if and only if both c and 1 − c are
squares.
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In other words, (Fq2 , ∗c) is flexible if and only if both c and 1 − c are squares,
whenever c ∈ Fq2 and c /∈ {0, 1}.

Maximal nonassociativity via nearfields. Let c be an element of a nearfield
N such that c(1 − c) 6= (1 − c)c. If (x, y, z) is a nondiagonal associative triple in
(N, ∗c), then the elements x, y and z have to be pairwise distinct, by the results
above.

Since there exists α ∈ Aff(N) ≤ Aut(N, ∗c) such that α(0) = x and α(1) = y,
the quasigroup (N, ∗c) is maximally nonassociative if and only if (0∗c1)∗cz 6=
0 ∗c (1 ∗c z) for every z ∈ N , z /∈ {0, 1}. Note that

(0 ∗c 1) ∗c z = c+ (z − c)c and 0 ∗c (1 ∗c z) = (1 + (z − 1)c)c.

Maximal nonassociativity via Dickson nearfields. It may be proved that for
each odd q > 1, q a power of an odd prime, there exists c ∈ Fq2 such that the
quasigroup (Fq2 , ∗c) is maximally nonassociative. The proof is nonconstructive—
the idea is to estimate the number of c ∈ Fq2 , c /∈ {0, 1}, for which there exists a
nondiagonal associative triple, and show that this number is less than q2 − 2.

The case of q = 3 is easy to verify by hand. It turns out that (F9, ∗c) is maximally
nonassociative whenever c /∈ F3. Furthermore, if c, d ∈ F9 \ F3, then (F9, ∗c) ∼=
(F9, ∗d).

The weighted average. Consider now the quasigroup (F, ∗c) in the case when F
is a field (or, more generally, a division ring), and c /∈ {0, 1}. The operation

x ∗c y = x+ (y − x)c = x(1− c) + yc

is known as the weighted average. It fulfils the medial law xy · uv = xu · yv. That
may easily be verified directly. Another way how to prove it is to use a construction
below. The connection to the construction is by the fact that both x 7→ xc and
x 7→ x(1− c) are automorphisms of the group (F,+, 0).

Another name for the medial law is the entropic law.

A construction. Let (G,+) be an Abelian group, and let α and β be commuting
automorphisms of (G,+) (thus αβ = βα). Furthermore, let c be an element of G.
For x, y ∈ G set

x ∗ y = α(x) + β(y) + c.

Then (G, ∗) is quasigroup isotopic to (G,+). If x, y, u, v ∈ G, then

(x ∗ y) ∗ (u ∗ v) = (α(x) + β(y) + c) ∗ (α(u) + β(v) + c)

= α2(x) + αβ(y) + βα(u) + β2(v) + α(c) + β(c) + c

= α2(x) + αβ(u) + βα(y) + β2(v) + α(c) + β(c) + c

= (x ∗ u) ∗ (y ∗ v).

Note that if c = 0 and α + β = idG, then x ∗ x = x. This is the case of the
weighted average. Idempotent medial quasigroups are flexible. Indeed if (Q, ·) is
such a quasigroup, then x · yx = xx · yx = xy · xx = xy · x.

Toyoda theorem. Let (Q, ∗) be a medial quasigroup. Then Q may be equipped with
the structure of an abelian group in such a way that there exist α, β ∈ Aut(Q,+)
and c ∈ Q that fulfil αβ = βα and x ∗ y = α(x) + β(y) + c, for all x, y ∈ Q.

The proof of Toyoda theorem takes about one page. One of the methods is to use
properties of autotopisms.


