Analytic combinatorics

Lecture 4

March 31, 2021
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Notation: For a complex number z = x + iy with x,y € R:

o R(z) = x is the real part of z

o J(z) =y is the imaginary part of z

o |z| = v/x2 + y? is the absolute value (or modulus) of z
@ Z = x — Iy is the complex conjugate.

Let p € [0,+0o0) and z € C.
@ The open neighborhood of z with radius p, denoted N ,(z), is the set
{weGC |w—z| <p}
@ The closed neighborhood of z with radius p, denoted N<,(z), is the set
{weC; |w—2z| <p}
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Complex numbers

Notation: For a complex number z = x + iy with x,y € R:

o R(z) = x is the real part of z

o J(z) =y is the imaginary part of z

o |z| = v/x2 + y? is the absolute value (or modulus) of z
@ Z = x — Iy is the complex conjugate.

Let p € [0,+0o0) and z € C.

@ The open neighborhood of z with radius p, denoted N ,(z), is the set
{weC |w—z <p}

@ The closed neighborhood of z with radius p, denoted N<,(z), is the set
{weC; |w—2z| <p}

@ The punctured open neighborhood of z with radius p, denoted NZ (2), is the set
{weC; 0<|w-—2z <p}

@ The punctured closed neighborhood of z with radius p, denoted N’%p(z), is the
set {w € C; 0 < |w — z| < p}. —
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Recall: An infinite series of (real or complex) numbers -7 ) s, converges to a sum S
if limg oo 3K _gsn=S.

Our focus: Series of the form > °°  a,z", with (a,) C C and z € C.

For a complex f.p.s. A(x) = > 12ganx" € C[[x]], the exponential growth rate of A(x),

denoted 7(A), is defined as

n(A) := limsup +/|an| € [0, +o0].
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Complex series

Recall: An infinite series of (real or complex) numbers -7 ) s, converges to a sum S
if limg oo 3K _gsn=S.

Our focus: Series of the form > °° 1 a,z", with (a,) C C and z € C.

Definition

For a complex f.p.s. A(x) = > 12ganx" € C[[x]], the exponential growth rate of A(x),
denoted 7(A), is defined as

n(A) := limsup +/|an| € [0, +o0].
n— oo
Remark: For G € (0,+00), n(A) = G means that for every € > 0, there are only

finitely many values of n such that |a,| > (G 4 €)", but there are infinitely many
values of n such that |as| > (G —€)".
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Complex series

Recall: An infinite series of (real or complex) numbers -7 ) s, converges to a sum S
if iMoo 3K osn=S.
Our focus: Series of the form >0 o anz", with (ap) CC and z € C.

Definition

For a complex f.p.s. A(x) = > 12ganx" € C[[x]], the exponential growth rate of A(x),
denoted 7(A), is defined as

n(A) := limsup +/|an| € [0, +o0].

Remark: For G € (0,+00), n(A) = G means that for every € > 0, there are only
finitely many values of n such that |a,| > (G 4 €)", but there are infinitely many
values of n such that |as| > (G —€)".

Definition

The radius of convergence of A(x) € C[[x]], denoted p(A), is defined as

1
€ [0, +o0], with the convention 5= = +o00.

P(A) = ( 2)

The f.p.s. is said to be convergent if p(A) > 0 (or equivalently n(A) < 4o0).
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Radius of convergence

Let A(x) = Y 12 anx" € C[[x]] be a series with radius of convergence p. Then
o If p = +oo0, then for every z € C, the series A(z) = Z,ﬁo anz" converges.

e If p =0, then for any z # 0, the series A(z) does not converge.



Radius of convergence

Fact

Let A(x) = Y 12 anx" € C[[x]] be a series with radius of convergence p. Then
o If p = +oo0, then for every z € C, the series A(z) = Z,?Zo anz" converges.
e If p =0, then for any z # 0, the series A(z) does not converge.

e If p € (0,+00), then A(z) converges for all z with |z| < p (absolutely, locally
uniformly on N,(0)), and does not converge for any z with |z| > p.

<
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Analytic functions

Definition

Let zg € C, let f be a complex-valued function defined on an open set 2 C C
containing zg. We say that f is analytic in zy if there is an € > 0 and a power series
A(x) = D720 anx™ with p(A) > e such that for every z € N<c(z0) we have

__szl = Z an(z — z0)".
‘C:O 7

The expression > °° 1 an(z — 2z0)" is then the (power) series expansion of f around the
-
center zg.
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Analytic functions

Definition

Let zg € C, let f be a complex-valued function defined on an open set 2 C C
containing zg. We say that f is analytic in zy if there is an € > 0 and a power series
A(x) = D720 anx™ with p(A) > e such that for every z € N<c(z0) we have

f(z) = Z an(z — z0)".
n=0

The expression > 2 an(z — 2z0)" is then the (power) series expansion of f around the
center zg.

Observation

Let zg € C, let f,g: C — C be two functions satisfying f(z) = g(z+ zo) for all z € C.
Then f is analytic in O with series expansion ) > a,z" if and only if g is analytic in
2o with series expansion Y >° o an(z — z0)".
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Properties of analytic functions

Let f be analytic in 0 with series expansion A(z) = > 72, anz", let g be analytic in 0
with series expansion B(z) = > 72 bpz". Then
! -Zra)tl»ws

e f(z) + g(z) is analytic in 0, with series expansion t‘_\(z) + B(z2),, % Cﬁ:ﬂ]

o f(z)g(z) is analytic in 0, with series expansion A(z)B(z
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Properties of analytic functions

Let f be analytic in 0 with series expansion A(z) =Y 72, anz”, let g be analytic in 0
with series expansion B(z) = >_7°, bsz". Then

o f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),
o f(z)g(z) is analytic in 0, with series expansion A(z)B(z),
° iflf(O) # 0 (equivalently, ap # 0), then 'sw, with series expansion

A(z)’

S in («m‘% > C
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Properties of analytic functions

Let f be analytic in 0 with series expansion A(z) = > 72, anz", let g be analytic in 0
with series expansion B(z) = > 72 bpz". Then

e f(z) + g(z) is analytic in 0, with series expansion A(z) 4+ B(z),
o f(z)g(z) is analytic in 0, with series expansion A(z)B(z),
o if £(0) # 0 (equivalently, ag # 0), then % is analytic in 0, with series expansion

1
A(z)’

o if g(0) = 0 (equivalently, bp = 0), then f(g(z)) is analytic in 0, with series
expansion A(B(z)). — A:‘—l:
&\M(/"{Jl}\ L’ln-\,r’ ol
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Properties of analytic functions

Let f be analytic in 0 with series expansion A(z) =Y 72, anz”, let g be analytic in 0
with series expansion B(z) = >_7°, bsz". Then

o f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),

o f(z)g(z) is analytic in 0, with series expansion A(z)B(z),

o if £(0) # 0 (equivalently, ag # 0), then % is analytic in 0, with series expansion

1
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o if g(0) = 0 (equivalently, by = 0), then f(g(z)) is analytic in 0, with series
expansion A(B(z)).




Properties of analytic functions

Let f be analytic in 0 with series expansion A(z) =Y 72, anz”, let g be analytic in 0
with series expansion B(z) = >_7°, bsz". Then

o f(z) + g(z) is analytic in 0, with series expansion A(z) + B(z),

o f(z)g(z) is analytic in 0, with series expansion A(z)B(z),

o if £(0) # 0 (equivalently, ag # 0), then % is analytic in 0, with series expansion

1
A(z)’

o if g(0) = 0 (equivalently, by = 0), then f(g(z)) is analytic in 0, with series
expansion A(B(z)).

Consequence: convergent series form a subring of C[[x]].

S)(M”D
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Derivative

T —
Let zp € C, and let f be a complex-valued function defined on an open set Q < L
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f'(z0) = lim f(z) = f(z0)
z—27g z— 2

ik Swgpose (X d4,) «d (7,d,)
a\)re, wediie 5\’“'&5/ %X/\ ¥/I O(e)(’ /5é7/
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Derivative

Definition

Let zg € C, and let f be a complex-valued function defined on an open set Q
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f'(z0) = lim f(z) = f(z0)

z—2zg z— 2

Remark: If f has a derivative f/(z) € C, then f is continuous in zg.
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Definition

Let zg € C, and let f be a complex-valued function defined on an open set Q
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Definition

Let zg € C, and let f be a complex-valued function defined on an open set Q
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f'(z0) = lim f(z) = f(z0)

720 z— 2z
Remark: If f has a derivative f/(z) € C, then f is continuous in zg.
Let f be analytic in 0, with series expansion A(z) = > 72, anz". Then

o f’ is defined on a neighborhood of 0, is analytic in 0, with series expansion
LA(2) = X2 0(n+ 1appaz".




Derivative

Let zg € C, and let f be a complex-valued function defined on an open set Q
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f(z)—f
F(z0) = lim ()= F(z0)
720 z— 2z
Remark: If f has a derivative f/(z) € C, then f is continuous in zg.
Let f be analytic in 0, with series expansion A(z) = > 72, anz". Then
o f’ is defined on a neighborhood of 0, is analytic in 0, with series expansion
LA(2) = X2 0(n+ 1appaz".
@ Consequently, f is continuous,and has continuous derivatives of all orders,

w0
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Derivative

Definition

Let zg € C, and let f be a complex-valued function defined on an open set Q
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f'(z0) = lim f(z) = f(z0)

z—2zg z— 2

Remark: If f has a derivative f/(z) € C, then f is continuous in zg.
Let f be analytic in 0, with series expansion A(z) = > 72, anz". Then

o f’ is defined on a neighborhood of 0, is analytic in 0, with series expansnon
AR =200+ Dan1z". e— = o, +2a,t+ 30\3% +
@ Consequently, f is continuous and has contmuous derivatives of all orders,
o f(0) = ap, f'(0) = a1, f”"(0) = 2ay, and in general f("(0) = nla,, where (" is
the derivative of f of order n.
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Derivative

Definition

Let zg € C, and let f be a complex-valued function defined on an open set Q
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f(z)—f
F(z0) = lim ()= F(z0)
720 z— 2z
Remark: If f has a derivative f/(z) € C, then f is continuous in zg.
Let f be analytic in 0, with series expansion A(z) = > 72, asz". Then
o f’ is defined on a neighborhood of 0, is analytic in 0, with series expansion
LA(2) = X2 0(n+ 1appaz".
@ Consequently, f is continuous and has continuous derivatives of all orders,
o f(0) = ap, f'(0) = a1, f”"(0) = 2ay, and in general f("(0) = nla,, where (" is
the derivative of f of order n.

o In particular, the series expansion of an analytic function is unique.
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Derivative

Definition

Let zg € C, and let f be a complex-valued function defined on an open set Q
containing zp. The derivative of f in zp, denoted f/(zp), is defined by

f'(z0) = lim f(z) = f(z0)

z—2zg z— 2

Remark: If f has a derivative f/(z) € C, then f is continuous in zg.
Let f be analytic in 0, with series expansion A(z) = > 72, anz". Then

o f’ is defined on a neighborhood of 0, is analytic in 0, with series expansion

LA(2) = X2 0(n+ 1appaz".

@ Consequently, f is continuous and has continuous derivatives of all orders,

o f(0) = ap, f'(0) = a1, f”"(0) = 2ay, and in general f("(0) = nla,, where (" is
the derivative of f of order n.

In particular, the series expansion of an analytic function is unique.
Suppose f(0) =0 and f/(0) # 0 (equivalently, ao =0 and a; # 0). Then there is

€ > 0 such that f maps N<5g0 bijectively to amcontaining 0

o
and the |nverse functlon £ Q — N<.(0) is analytic in 0 with series
expansion A(=1)(z). -AY L

/’*ngi——a
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Local analytic uniqueness

Proposition

Let f be analytic in zg. Then one of the following possibilities holds:
@ There is an € > 0 such that for every z € N<.(z0), f(z) = f(20).
@ There is an € > 0 such that for every z € NX _(20), f(z) # f(20).
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Local analytic uniqueness

Let f be analytic in zg. Then one of the following possibilities holds:
@ There is an € > 0 such that for every z € N<.(z), f(z) = f(zo).j
@ There is an € > 0 such that for every z € NX _(20), f(z) # f(20).

Corollary

Let f and g be functions analytic in zo, with f(z0) = g(z0). Then one of the following
possibilities holds:

@ There is an € > 0 such that for every z € N<.(z0), f(z) = g(z).
o There is an € > 0 such that for every z € Nt _(z0), f(z) # g(2).

Psg AWE\B M?"“\MM Ly \,C\La;og(%\- fé;;)
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Local analytic uniqueness

Let f be analytic in zg. Then one of the following possibilities holds:
@ There is an € > 0 such that for every z € N<.(z0), f(z) = f(20).
@ There is an € > 0 such that for every z € NX _(20), f(z) # f(20).

Corollary

Let f and g be functions analytic in zo, with f(z0) = g(z0). Then one of the following
possibilities holds:

o There is an € > 0 such that for every z € N<-(z0), f(z) = g(z). &
o There is an € > 0 such that for every z € Nt _(z0), f(z) # g(2).

Corollary

Let f and g be functions analytic in zp, such that for every § > 0 there is a
z € N% 5(20) such that f(z) = g(z). Then, for some € > 0, we have f(z) = g(z) for
every z € N<c(20).
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Examples of analytic functions
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Examples of non-analytic functions

The functions f1(z) = ER(Z) f2(z) l/:(z) f3(z) = |z| and f3(z) = Z are not analytic
in any point.
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Global properties of analytic functions

Let Q C C be an open set. We say that f is analytic on , if f is analytic in every
point of Q.

Proposition

Let A(z) = > ;2o anz" be a power series with radius of convergence p > 0. Define a
function f: N<,(0) — C by f(z) = > 725 anz". Then f is analytic on N<,(0).
Moreover, for zg € N<,(0), the series expansion of f with center zy has radius of
convergence at least p — |zo|.






