1. Show that
a) $\mu \mapsto \mu(B)$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $([0, \infty], \mathcal{B}([0, \infty]))$ for every $B \in \mathcal{B}(E)$,
b) $\left.\mu \mapsto \mu\right|_{B}$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $(\mathcal{M}, \mathfrak{M})$ for every $B \in \mathcal{B}(E)$.
c) $\mu \mapsto \int_{E} f(x) \mu(\mathrm{d} x)$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $([0, \infty], \mathcal{B}([0, \infty]))$ for every non-negative measurable function f on E.
$(E, B(E)) \ldots$ imagine $\left(\mathbb{R}^{d}, B^{d}\right)$
W... measures on (E, B(E)) ... locally finite (on compact M... σ-algebra on M.... "projections are measurable" $B \in B(E): \pi_{B}: \mu \rightarrow[0, \infty] \quad \ldots \pi_{B}(\mu)=\mu(B) \quad \ldots$ projection $\pi_{B}(\Psi)=\Psi(B)$ we want these
M generated by $\quad M_{B_{1}, r}=\{u \in M: n(B)<\pi\}, B \in B$
a) $A_{B}: \mu \mapsto \sim(B) \quad \ldots(\mu, M) \rightarrow([0, \infty], B([0, \infty]))$ $r \in[0,0$

$$
A_{B}=\pi_{B} \cdots>\quad \pi_{B}^{-1}([0, \Omega))=\left\{\sim \in \mu_{n} \mu(B) \in[0, \Omega)\right\}=
$$ enough to check for these sets, they generate $B([0, \infty])$

b) $\left(\left.\alpha\right|_{B}(A)=\cdots(A \sqcap B), \forall A \in B(E)\right.$

$$
A_{B}:\left.\mu \mapsto \mu\right|_{B} \cdots\left(M, \frac{M 2}{}\right) \rightarrow(M, M 1)
$$

take $M_{B_{0, R}} \in M_{12}, A_{B}^{-1}\left(M_{B_{0,}, ~}\right) \stackrel{(M 2}{ }$

$$
\begin{aligned}
& A_{B}^{-1}\left(M_{B_{0}, r}\right)=\left\{\mu \in M:\left.M\right|_{B} \in M_{B_{1}, r}\right\}= \\
& \left.=\left\{\mu \in M: \mu\left(\widetilde{B \cap B_{0}}\right)<\pi\right\}=M_{B_{n} B_{0}, r} \in \mathcal{M}\right\}
\end{aligned}
$$

$$
\left.\mu l_{B}\left(B_{\sigma}^{1}\right)<\Omega\right\}
$$

C^{3} one of generator
c) $f \geq 0$ measurable function on $(E, B(E))$

$$
\begin{aligned}
& A_{f}: \mu \longmapsto \int_{E} f(x) d \mu(x) \quad \ldots(M, 17 R) \rightarrow([0, \infty], B([0, \infty]) \\
& \cdot f(x)=\mathbb{1}_{B}^{(x)}=\underbrace{1}_{0} \ldots x \in B \quad \ldots x \in B \quad \int_{E} f(x) d(v(x)=\mu(B) \\
& \Rightarrow A_{f}=\pi_{B} \quad \ldots \text { measurable -..see a) }
\end{aligned}
$$

- $f=c \cdot \mathbb{I}_{B}$.... multiple of a measurable function
- $f=\sum c_{i} \mathbb{1}_{B_{i}} .$. simple function ... sum of $5 \quad V$
$f \geq 0$... limit of simple functions. fin ρf monota (point
(Levy monotone convergence the

$$
A_{n}: \leadsto \longmapsto \int_{E} f_{n}(x) d n(x) \rightarrow \int_{E} f(x) d n(x)=A_{f}(n)
$$

$\Rightarrow A_{1}$ is a pointwise limit of measurable functions $A_{f_{n}} \Rightarrow A_{f}$ is measurable \uparrow provided the target space

$\Psi \circ A_{f}$ is measurable $\left(\Omega, b_{1} \mathbb{R}\right) \rightarrow([0, \infty], B([0, \infty]))$ $A_{f}(\Psi)$

