NMAI059 Probability and statistics 1 Class 5

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Random vectors

Conditional distribution

Continuous random variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Basic description of random vectors

- X, Y random variables on the same probability space (Ω, F, P).
- ▶ We wish to treat (*X*, *Y*) as one object a random vector.
- How to do that?
- Example: we roll twice a 4-sided dice, X = first outcome, Y = second one.

(toss one cocm) Y=4 $X, Y \sim Bin\left(\frac{1}{2}\right)$ X-12-0 X=4-1 X = # of Heals 4. # of Tents 8=1-9 XI indepruchens toss two comes 001

Joint distribution

Definition

For a discrete r.v. X, Y on a probability space (Ω, \mathcal{F}, P) we define their joint PMF $p_{X,Y} : \mathbb{R}^2 \to [0,1]$ by a formula $= \mathcal{P}(\mathcal{X} = \mathcal{B} \land \mathcal{Y})$

$$p_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) = x \& Y(\omega) = y\}).$$

P: F-> [0,1]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For this we need that for each $x, y \in \mathbb{R}$ we have $\{\omega \in \Omega : X(\omega) = x \& Y(\omega) = y\} \in \mathcal{F}$, otherwise we do not consider (X, Y) as a random vector.

• We can define it also for more than two r.v.'s $p_{X_1,...,X_n}(x_1,...,x_n) = \mathcal{P}(X \not\subseteq \mathcal{L} \longrightarrow \mathcal{L} \not\subseteq \mathcal{L})$

 $\frac{\text{Theorem}}{\text{Reorem}} \begin{array}{c} X, Y \\ discrement \\ R \\ (x_{i}) = P(X = x_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i}) \stackrel{(k)}{=} \sum_{g \in I_{n}(Y)} P(X \cdot x \cdot 2 \cdot Y_{i})$ Py (g) - R(9.g) - D P(X-KR Feg) - D Per (Kg) x chilk) x chilk) $\frac{Proof}{\{\omega : X(\omega) - \omega\}^{2}} (\int \{\omega : X(\omega) - \omega\}^{2} \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \int \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \int \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \int \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \int \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) - \omega} \frac{\mathcal{P}(\omega) - \omega}{\mathcal{P}(\omega) -$

Independence of r.v.'s

Definition

Discrete r.v.'s X, Y are independent if for every $x, y \in \mathbb{R}$ the events $\{X = x\}$ a $\{Y = y\}$ are independent. That happens if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$
prob. frakersecher {K=x} n{{2}}

 $R_{XY}(x_{1,2}) = R_{X}(x_{0}) \cdot P_{Y}(x_{1})$

IF X, Y eve indegendent, han Px S from Px, Py

Example: Multinomial distribution

On a die we roll *i* with probability *p_i* for *i* = 1,...,6. We roll the die *n*-times and let *X_i* be the number of rolls when *i* came up.

Pit---+Pc=1, nel

 $(X_i - t = n)$ - 2 K K = / 1 Ky-, Kg (ky-, Kg) = P(X; k, 2 At of way to part set El .- , of the set of some k, t ... Ket - Ks indo. we will I at the k. places we drose for 1 6~2 P. + B $\begin{pmatrix} n \\ u \end{pmatrix} X_{1} \sim B_{14} \begin{pmatrix} n \\ p \end{pmatrix}$ NOT INDER: $\begin{pmatrix} x \\ u \end{pmatrix} X_{1} \sim B_{14} \begin{pmatrix} n \\ p \end{pmatrix}$ Always $(X_{1} \sim x)$ PX-X (0,- 4)= 0 = T P. (6) X .~ Bin (n, p;)/

Coupling – nontrivial use of joint distributions

▲ロト▲園ト▲園ト▲園ト 園 のなぐ

Coupling – nontrivial use of joint distributions

- $X \sim Bin(n, p)$ and $Y \sim Bin(n, q)$ for p < q
- What can be said about F_X and F_Y ?
- $\sum_{i=0}^{k} {n \choose i} p^i (1-p)^{n-i}$ is an increasing function of p but why?

Coupling $\chi \sim B_{in}(b,p)$ $P(\chi \in k) \ge P(\chi \in k)$

WHY X. 54-

p(x=1). P(4:1/K:1/+ P(x-0) P(4-1/2-5)

 $(1-p).\frac{g-p}{1-p} = g$

- $X = \sum_{i=1}^{n} X_i$, where X_1, \dots, X_n are independent $\sim Bera(p)$
- $Y = \sum_{i=1}^{n} Y_i$, where Y_1, \ldots, Y_n are independent
- Joint distribution of X and Y is not determined, it can be arbitrary.
- We make it so that X and Y are not independent, more so,

Port of X=0 there

 $It suffices to define <math>Y_i = \int \frac{1}{1} \frac{1}$

Product of independent r.v.'s (X, 4 NOT MOR => MAY BE X=4 E(X2) 7 Theorem For independent discrete r.v.'s X, Y we have $(v_{a-k}) = \mathcal{E}(k^2 - \mathcal{E})^{<}$ $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$ Zung P(X-1028-3) = 2 x3 P(X-10). P(4-y)) · Z 3640) J'' x. R(X=re) V . T(Y). Losa (g-g) (arb) (crd) = actod+ Letld

▲□▶▲圖▶▲圖▶▲圖▶ ■ のQの

Function of a random vector

(20 LOTAS) Theorem Suppose X, Y are discrete r.<u>v.'s</u> on (Ω, \mathcal{F}, P) , let $g : \mathbb{R}^2 \to \mathbb{R}$ be discode a function. \longrightarrow Then Z = g(X, Y) is a r.v. on (Ω, \mathcal{F}, P) and it satisfies $\mathbb{E}(g(X,Y)) = \sum g(x,y)P(X=x,Y=y),$ (fis)-xy $x \in ImX \ y \in ImY$ Z(ax Z KK=x, 4, 2). whenever the sum is defined. (J R(K=K) aZ x. F(K=K)) riscrete Theorem (Linearity of expectation) For X, Y r.v.'s (independence is not needed!) and $a, b \in \mathbb{R}$ we Zat RKEK, Gg) have ing. $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$ g(x,g)= ax+ by 267 PA: 4. 7. E(aX+LY) = Fg(Xy) = Z(ax+by) P(1:0, 1)

 $\overline{Z} := g(X, Y) : For \omega \in \mathcal{Q} \quad \overline{Z(\omega)} \cdot g(X(\omega), Y(\omega))$ Gisedise. r.v. #2 = R Z (2) = {U : Z(G) - 2 } e F $= \bigcup \{\omega : X(\omega) \cdot \omega \& \{(\omega) = y\}\}$ $\Rightarrow \bigcup (u) = \bigcup$ CF $E^{2} = \sum_{2} P(R : 2) = \sum_{2} \left(\sum_{2} P(K : 4, 4) \right) = \sum_{3} \left(\sum_{3} P(K : 4, 4) \right) = \sum_{3} \left(\sum_{3} P(R : 2) \right)$

Sum of independent r.v.'s

g(x-y)=X+4 (E2=EX+E4)

• Given $p_{X,Y}$, how to find the distribution of the sum, Z = X + Y?

 $\begin{array}{c} \chi_{,g} \\ \chi_{,g^{-2}} \\ P(\chi_{+}) = 4 \\ P(\chi_{+}) = 4 \\ P(\chi_{-3} + P(\chi_{-2}) + P(\chi_{-2}) \\ P(\chi_{-3} + P(\chi_{-1}) + P(\chi_{-2}) \\ P(\chi_{-1}) + P(\chi_{-3}) \end{array}$

Sum of r.v.'s - convolution

Theorem (Convolution formula)

Let *X*, *Y* be discrete random variables. Then their sum Z = X + Y has PMF given by

$$P(Z=z) = \sum_{x \in Im(X)} P(X=x, Y=z-x).$$

If we further assume that X, Y are independent, then

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x)P(Y = z - x).$$

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x)P(Y = z - x).$$

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x)P(Y = z - x).$$

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x)P(Y = z - x).$$

matterepty X Success Example of a convolution X~ Bin (m, p) _ > X+ 4~Bry (m+n, p) y~ Bin (nip) X, 4 independent P(Z=2)= Z P(X=k 2 4=2-k) BIL (M+4, p) = Z P(X=k). F(Y= 21-k) $= \sum_{k=0}^{m} \binom{m}{k} \frac{p^{k} (1-p)^{m+k}}{2} \binom{m}{2} \frac{p^{2-k} (1-p)^{k}}{2}$ $= \left(\sum_{k=0}^{m} \binom{n}{k} \binom{n}{2-k}\right) \cdot \frac{2}{p} \binom{n+n-2}{2} \binom{n+n}{2} \cdot \frac{2}{p} \binom{n}{1-p}$ < ロ > < 同 > < 回 > < 回 >

Overview

Random vectors

Conditional distribution

Continuous random variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conditional PMF $k = \frac{k}{k} \frac{1}{k} \frac{2}{k} \frac{3}{k} \frac{4}{k} \frac{2}{k} \frac{3}{k} \frac{4}{k} \frac{2}{k} \frac{3}{k} \frac{4}{k} \frac{2}{k} \frac{3}{k} \frac{3}{k} \frac{1}{k} \frac{2}{k} \frac{3}{k} \frac{3}{k} \frac{1}{k} \frac{2}{k} \frac{3}{k} \frac{3}{k} \frac{3}{k} \frac{1}{k} \frac{2}{k} \frac{3}{k} \frac{3}{k} \frac{3}{k} \frac{1}{k} \frac{2}{k} \frac{3}{k} \frac{3}{k}$ X, Y – discrete random variables on $(\Omega, \mathcal{F}, P), A \in \mathcal{F}$ $p_{X|A}(x) := P(X = x \mid A) - P(X = x \mid A)$ example: X is outcome of a roll of a die, A = we got an even number \triangleright $p_{X|Y}(x|y) = P(X = x | Y = y)$ example: X, Z is an outcome of two independent die rolls, Y = X + Z. $p_{X|Y}(6|10) =$ $\begin{array}{c} \searrow p_{X|Y} \text{ from } p_{X,Y} \end{array} \\ \hline P_{X|Y} \begin{pmatrix} (\omega_{1} \beta_{2}) \end{pmatrix} & \hline P(1 + \omega_{2} \beta_{2} + \omega_{3}) \\ \hline P(1 + \omega_{3}) \end{pmatrix} & \hline P(1 + \omega_{3}) & \hline P_{X,Y} \begin{pmatrix} (\omega_{1} \beta_{2}) \end{pmatrix} & \hline P_{X,Y} \begin{pmatrix} (\omega_{1} \beta_{2}) \end{pmatrix} \\ \hline P(1 + \omega_{3}) \end{pmatrix} & \hline P(1 + \omega_{3}) \end{pmatrix} \\ \hline P(1 + \omega_{3}) & \hline P(1 + \omega_{3}) \end{pmatrix} & \hline P_{X,Y} \begin{pmatrix} (\omega_{1} \beta_{2}) \end{pmatrix} & \hline P_{X,Y} \begin{pmatrix} (\omega_{1} \beta_{2}) \end{pmatrix} \\ \hline P(1 + \omega_{3}) \end{pmatrix} \\ \hline P(1 + \omega_{3}) \end{pmatrix} \\ \hline P(1 + \omega_{3}) \end{pmatrix}$

Joint vs. conditional PMF

$p_{X,Y}$	 10	11	12
1			
2			
3			
4			
5			
6			

$p_{X Y}$	 10	11	12
1			
2			
3			
4			
5			
6			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Overview

Random vectors

Conditional distribution

Continuous random variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

General random variable

Definition

Random variable on (Ω, \mathcal{F}, P) is a mapping $X : \Omega \to \mathbb{R}$, such that for each $x \in \mathbb{R}$

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$$

discrete r.v. is a r.v.

CDF

Definition

Cumulative distribution function, CDF of a r.v. X is a function

$$F_X(x) := P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• F_X is a nondecreasing function

$$\blacktriangleright \lim_{x \to -\infty} F_X(x) = 0$$

- $\blacktriangleright \lim_{x \to +\infty} F_X(x) = 1$
- \blacktriangleright F_X is right-continuous

CDF examples

Quantile function

For a r.v. X we define its quantile function $Q_X : [0,1] \to \mathbb{R}$ by

$$Q_X(p) := \min \left\{ x \in \mathbb{R} : p \le F_X(x) \right\}$$

(日) (日) (日) (日) (日) (日) (日)

- If F_X is continuous, then $Q_X = F_X^{-1}$.
- ▶ Q_X(1/2) = median (watch out if F_X is not strictly increasing!)
- $Q_X(10/100) =$ tenth percentile, etc.

Continuous random variable

Definition

R.v. X is called continuous, if there is nonnegative real function f_X such that

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt.$$

(Sometimes such X is said to be absolutely continuous.) Function f_X is called the probability density function, pdf of X.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Using density

Theorem

Let X be a continuous r.v. with density f_X . Then

1.
$$P(X = x) = 0$$
 for every $x \in \mathbb{R}$.

2. $P(a \le X \le b) = \int_a^b f_X(t) dt$ for every $a, b \in \mathbb{R}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Uniform distribution

▶ R.v. *X* has a uniform distribution on [a, b], we write $X \sim U(a, b)$, if $f_X(x) = 1/(b-a)$ for $x \in [a, b]$ and $f_X(x) = 0$ otherwise.

Universality of a uniform distribution

Theorem

Let *F* be a function "of CDF-type": nondecreasing right-continuous function with $\lim_{x\to-\infty} F(x) = 0$ a $\lim_{x\to+\infty} F(x) = 1$. Let *Q* be the corresponding quantile function.

- 1. Let $U \sim U(0,1)$ and X = Q(U). Then X has CDF F.
- 2. Let X be a r.v. with CDF $F_X = F$, suppose F is increasing. Then $F(X) \sim U(0, 1)$.

(ロ) (同) (三) (三) (三) (○) (○)

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□