NMAI059 Probability and statistics 1 Class 5

Robert Šámal

Overview

Random vectors

Conditional distribution

Continuous random variables

Basic description of random vectors

- X, Y - random variables on the same probability space (Ω, \mathcal{F}, P).
- We wish to treat (X, Y) as one object - a random vector.
- How to do that?
- Example: we roll twice a 4-sided dice, $X=$ first outcome, $Y=$ second one.

(toss one comm)

tess we wore $x=\pi$ of feal toss two corms

$\varphi=* \rho$ Toils

Joint distribution

Definition
For a discrete r.v. X, Y on a probability space (Ω, \mathcal{F}, P) we define their joint PMF $p_{X, Y}: \mathbb{R}^{2} \rightarrow[0,1]$ by a formula

$$
=P(X=x \& 4 ; z)
$$

$$
p_{X, Y}(x, y)=P(\{\omega \in \Omega: X(\omega)=x \& Y(\omega)=y\}) .
$$

For this we need that for each $x, y \in \mathbb{R}$ we have $\{\omega \in \Omega: \underline{X}(\omega)=x \& Y(\omega)=y\} \in \mathcal{F}$, otherwise we do not consider (X, Y) as a random vector.

- We can define it also for more than two r.v.'s

$$
\begin{aligned}
& \text { We can detine it also tor more than two r.v.'s } \left.X_{k}=t_{n}\right) \\
& p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) .=P\left(X_{1}=\& \cdots \& X_{k}\right)
\end{aligned}
$$

Marginal distribution

$$
P(1)=P(X=1)=P(X=125:-1
$$

- Given $p_{X, Y}$, how to find the distribution of each of the ${ }^{P}\left(x=x^{\prime} \sum_{x}, 2\right)$ coordinates, that is $\longdiv { p _ { X } \text { and } p _ { Y } 3 }$

Theorem X,Y discri.r.u.

$$
\begin{aligned}
& P_{x}(x):=\underline{A} P(x=x) \stackrel{\sum_{y}}{=} \sum_{y \in \ln (y)} P(x=x 84 y)=: \sum_{y<1(y)} P_{x+}(x y) \\
& P_{y}(y)=P(y ; g) \cdot \sum_{x<\ln (x)} P\left(x=0 \pi y_{y}\right)=\sum_{x \in \ln (x)} P_{i x}(x, y)
\end{aligned}
$$

Pooof

$$
\frac{\operatorname{sog}}{\left.\{\omega: X(\omega)-\infty\}=\bigcup_{\partial \in \ln (1)}\{\omega: X(\omega)=\infty \& Y(\omega)) \Delta z\right\}}
$$

$$
P()=\frac{2 c \ln (1)}{\sum P(--)}
$$

Independence of r.v.'s
Definition
Discrete rev's X, Y are independent if for every $x, y \in \mathbb{R}$ the events $\{X=x\}$ a $\{Y=y\}$ are independent. That happens if and only if

$$
P(X=x, Y=y)=P(X=x) P(Y=y) .
$$

prob. frutersecter $\{x=x\} \cap\left\{y_{2} y\right\}$

$$
P_{x}(x, y)=R_{x}(x) \cdot P_{y}(y)
$$

IF X, Y ave independent, than $P_{X, S}$ sean $L e$ recover P_{X}, P_{Y}

Example: Multinomial distribution
$p_{6}+\cdots+p_{6}=1$
On a die we roll i with probability p_{i} for $i=1, \ldots, 6$. We roll the die n-times and let X_{i} be the number of rolls when i came up.

Coupling - nontrivial use of joint distributions

- $X \sim \operatorname{Bin}(n, p)$ and $\underline{Y} \sim \operatorname{Bin}(n, q)$ for $p<\underline{q}$
- What can be said about F_{X} and F_{Y} ?
$\geqslant \sum_{i=9}^{k}\binom{n}{i} p^{i}(1-p)^{n-i}$ is an increasing function of $p=$ out

Coupling - nontrivial use of joint distributions

- $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(n, q)$ for $p<q$
- What can be said about F_{X} and F_{Y} ?
- $\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i}$ is an increasing function of p - but why?

Product of independent r.v.'s ($x, 4$ vor mber \Rightarrow nis BE FACSC

Theorem

$$
x=4 \quad \mathbb{E}\left(x^{2}\right) \neq(\mathbb{E}(x))^{2}
$$

For independent discrete r.v.'s X, Y we have $\left.\operatorname{\zeta var}(\underline{X})=\mathbb{E}\left(x^{2}\right)-(E x)^{2}\right)$

$$
\begin{aligned}
& \mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y) . \\
& \text { Proof } \mathbb{E}(X \cdot y) \stackrel{(2)}{=} \sum_{\substack{x \operatorname{lin}(x) \\
y \in \ln (Y)}} x-y(X \cdot x \& 6 \cdot y) . \\
& =\sum x z P(x=x) \cdot P(y=y) \\
& \operatorname{bosic} \xrightarrow{\text { agebse }}=\sum_{x \in \operatorname{loc}(x)} x \cdot P(X=x) \cdot \sum_{j \in h_{2}(s)} y \cdot P(\varphi \cdot-g) \\
& d g \cdot=\mathbb{E}(x) \cdot \mathbb{F}(t) \\
& (a+b)(c+d) \\
& =a c r a d t+c-L d
\end{aligned}
$$

Function of a random vector

Theorem (2ヵ) Lotas)
Suppose X, Y are discrete r.v.'s on (Ω, \mathcal{F}, P), let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function.
\rightarrow Then $Z=g(X, Y)$ is a riv. on (Ω, \mathcal{F}, P)

- and it satisfies

$$
\underline{\mathbb{E}(g(X, Y))}=\sum_{x \in \operatorname{Im} X} \sum_{y \in \operatorname{Im} Y} g(x, y) P(X=x, Y=y),
$$

whenever the sum is defined.

discrete

Theorem (Linearity of expectation)

For X, Y r.v.'s (independence is not needed!) and $a, b \in \mathbb{R}$ we

Pal have
 $g(x, y)=\alpha x+y$

$$
\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y) .
$$

$$
\mathbb{E}(e x+(y)=\mathbb{E} g(X y)=
$$

$$
\begin{aligned}
& Z:=g(X, Y) \quad \text { For } \omega \in \Omega \quad Z(\omega): g(X(\omega), \varphi(\omega)) \\
& S \text { is a dsoc.o.u. } \\
& \forall \geq \in \mathbb{R} \quad Z^{-1}(z)=\{0: Z(0)=z\} \in \mathcal{F} \\
& =\bigcup\{\omega: X(0) \cdot x \& \varphi(0): y\}
\end{aligned}
$$

$$
\begin{aligned}
& P(Z=z)=\sum P(X=x, 4=y)
\end{aligned}
$$

Sum of independent r．v．＇s
－Given $p_{X, Y}$ ．how to find the distribution of the sum，

$$
\begin{aligned}
& Z=X+Y \text { ? } \\
& g(x, y)=x+4 \\
& \langle\mathbb{E} Z=E X+E Y \\
& \{z=\infty\}=\bigcup_{x, z}\{X \cdot x, y=g\} \\
& \text { あさy= } \\
& P(x+5=8) \\
& \begin{aligned}
=P(X=38,4 & =1)+P(X=2, \\
& =P(X: 1,4=3)
\end{aligned}
\end{aligned}
$$

Sum of r.v.'s - convolution

Theorem (Convolution formula)
Let X, Y be discrete random variables. Then their sum $Z=X+Y$ has PMF given by

$$
P(Z=z)=\sum_{x \in \operatorname{Im}(X)} P(X=x, Y=z-x)
$$

If we further assume that X, Y are independent, then

$$
P(Z=z)=\sum_{x \in \operatorname{Im}(X)} \frac{P(X=x) P(Y=z-x) .}{\text { Convoletcore }}
$$

Pref Axiom for deg'. cuecour -t

$$
\left.\{t \cdot z\}=\bigcup_{x \in c}^{\prime}(x)=x, y=y\right\}
$$

Example of a convolution

$$
\frac{X \sim \operatorname{Brn}(m, p)}{Y \sim \operatorname{Brm}(n, p)} \longrightarrow \frac{X_{+} g \sim B_{m}(m+n, p)}{Z^{\prime \prime}} \xlongequal{ }
$$

X,Y independect

$$
\begin{aligned}
& P(Z=2)=\sum_{k} P(X=k \& Y=z-k) \quad \text { Bru }(a+n, p) \\
& =\sum_{k}^{k} P(X=k) \cdot P(y=z-k) \\
& =\sum_{k=0}^{m}\binom{m}{k} p^{k}(1-p)^{m-k}\binom{n}{z-k} p^{2-k}(1-p)^{n-(z-k)} \\
& \left.=\sum_{k=0}^{k=0}\binom{m}{k}\binom{n}{z-k}\right] \cdot p_{\text {indep. } p^{k} k}^{z}(1-p)^{m+n-z}=\underline{\binom{m+n}{z} p^{z}(1-p)^{\text {mon-z }}}
\end{aligned}
$$

Overview

Random vectors

Conditional distribution

Continuous random variables

Conditional PMF \qquad

X, Y - discrete random variables on $(\Omega, \mathcal{F}, P), A \in \mathcal{F}$

- $p_{X \mid A}(x):=P(X=x \mid A)=P(X=\neq 1)$
example: \bar{X} is outcome of a roll of a die, $A=$ we got an even number
$p_{X \mid Y}(x \mid y):=P(X=x \mid Y=y)$ example: X, Z is an outcome of two independent die rolls, $Y=X+Z$.

$$
p_{X \mid Y}(6 \mid 10)=
$$

$p_{X \mid Y}$ from $p_{X, Y}:$

Joint vs. conditional PMF

$p_{X, Y}$	\cdots	10	11	12
1				
2				
3				
4				
5				
6				

$p_{X \mid Y}$	\cdots	10	11	12
1				
2				
3				
4				
5				
6				

Overview

Random vectors

Conditional distribution

Continuous random variables

General random variable

Definition
Random variable on (Ω, \mathcal{F}, P) is a mapping $X: \Omega \rightarrow \mathbb{R}$, such that for each $x \in \mathbb{R}$

$$
\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F} .
$$

- discrete r.v. is a r.v.

CDF

Definition
Cumulative distribution function, CDF of a r.v. X is a function

$$
F_{X}(x):=P(X \leq x)=P(\{\omega \in \Omega: X(\omega) \leq x) .
$$

- F_{X} is a nondecreasing function
- $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
- $\lim _{x \rightarrow+\infty} F_{X}(x)=1$
- F_{X} is right-continuous

CDF examples

Quantile function

For a r.v. X we define its quantile function $Q_{X}:[0,1] \rightarrow \mathbb{R}$ by

$$
Q_{X}(p):=\min \left\{x \in \mathbb{R}: p \leq F_{X}(x)\right\}
$$

- If F_{X} is continuous, then $Q_{X}=F_{X}^{-1}$.
- $Q_{X}(1 / 2)=$ median (watch out if F_{X} is not strictly increasing!)
- $Q_{X}(10 / 100)=$ tenth percentile, etc.

Continuous random variable

Definition
R.v. X is called continuous, if there is nonnegative real function f_{X} such that

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

(Sometimes such X is said to be absolutely continuous.)
Function f_{X} is called the probability density function, pdf of X.

Using density

Theorem
Let X be a continuous r.v. with density f_{X}. Then

1. $P(X=x)=0$ for every $x \in \mathbb{R}$.
2. $P(a \leq X \leq b)=\int_{a}^{b} f_{X}(t) d t$ for every $a, b \in \mathbb{R}$.

Uniform distribution

- R.v. X has a uniform distribution on $[a, b]$, we write $X \sim U(a, b)$, if $f_{X}(x)=1 /(b-a)$ for $x \in[a, b]$ and $f_{X}(x)=0$ otherwise.

Universality of a uniform distribution

Theorem
Let F be a function "of CDF-type": nondecreasing right-continuous function with $\lim _{x \rightarrow-\infty} F(x)=0$ a $\lim _{x \rightarrow+\infty} F(x)=1$. Let Q be the corresponding quantile function.

1. Let $U \sim U(0,1)$ and $X=Q(U)$. Then X has CDF F.
2. Let X be a r.v. with CDF $F_{X}=F$, suppose F is increasing. Then $F(X) \sim U(0,1)$.
