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Labelled classes

Definition

A labelled combinatorial class is a set A in which every object α ∈ A has a vertex set
(or ground set or set of labels), denoted V (α), which is a finite subset of N, satisfying
the following conditions:

For every finite set X ⊆ N, there are only finitely many objects α ∈ A with
V (α) = X .

For every two finite sets X ,Y ⊆ N of the same size, the number of objects in A

with vertex set X is the same as the number of those with vertex set Y .

For α ∈ A, the size of α, denoted |α|, is the size of V (α).

An element α ∈ A is normalized if V (α) = [n] for some n ∈ N (where
[n] = {1, 2, 3, . . . , n}).
Let An be the set {α ∈ A; V (α) = [n]}, i.e., the set of normalized elements of
size n.

A∗ denotes the set
⋃∞

n=0 An of all the normalized elements of A.
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Exponential generating functions

Definition

Let A be a labelled combinatorial class, let an = |An|. The exponential generating
function of A, denoted EGF(A) is the f.p.s.

∞∑
n=0

an
xn

n!
.

Remark: We may also write

EGF(A) =
∑
α∈A∗

x |α|

|α|!
.
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Operations with labelled classes and EGFs

Observation

If A and B are disjoint labelled comb. classes, then EGF(A∪B) = EGF(A) + EGF(B).

Definition

Let A and B be labelled comb. classes. Their labelled product, denoted A⊗ B, is the
labelled comb. class

{(α, β); α ∈ A & β ∈ B & V (α) ∩ V (β) = ∅},

with V ((α, β)) = V (α) ∪ V (β).

Lemma

EGF(A⊗ B) = EGF(A) EGF(B).

Proof.

[xn] EGF(A⊗ B) =
|(A⊗ B)n|

n!
=

1
n!

n∑
k=0

(n

k

)
|Ak | · |Bn−k | =

n∑
k=0

|Ak |
k!
·
|Bn−k |
(n − k)!

=
n∑

k=0

([xk ] EGF(A)) · ([xn−k ] EGF(B)) = [xn] EGF(A) EGF(B).
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Some more operations

Let A be a labelled comb. class, let A(x) be its EGF.

A⊗2 = A⊗ A is the class of ordered pairs of vertex-disjoint objects from A. Its
EGF is A(x)2.
A⊗k = A⊗ · · · ⊗ A︸ ︷︷ ︸

k copies

is the class of ordered k-tuples of vertex-disjoint objects

from A. Its EGF is A(x)k .
Assume A0 = ∅. Then {∅} ∪ A ∪ A⊗2 ∪ A⊗3 ∪ · · · is the class of ordered
sequences of vertex-disjoint objects from A. Its EGF is

1 + A(x) + A(x)2 + · · · =
1

1− A(x)
.

Assume A0 = ∅, and fix k ∈ N0. Let Setk (A) be the labelled comb. class of all
the k-element sets {α1, α2, . . . , αk} where the αi are vertex-disjoint objects from
A, and V ({α1, α2, . . . , αk}) = V (α1) ∪ V (α2) ∪ · · · ∪ V (αk ).

EGF(Setk (A)) =
1
k!

EGF(A⊗k ) =
1
k!

A(x)k .

Assume A0 = ∅. Define Set(A) =
⋃∞

k=0 Setk (A). Then

EGF(Set(A)) = 1 + A(x) +
A(x)2

2!
+

A(x)3

3!
+ · · · =

∞∑
k=0

A(x)k

k!
= exp(A(x)),

where exp(x) (or ex ) denotes the f.p.s.
∑∞

n=0
xn

n!
.
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Example: graphs and components

Notation:

gn . . . number of graphs on the vertex set [n] (so gn = 2
(

n
2

)
)

cn . . . number of connected graphs on the vertex set [n] (define c0 = 0)

G . . . labelled class of all graphs, G(x) = EGF(G)

C . . . labelled class of connected graphs, C(x) = EGF(C)

Questions:
1 What is the relationship between G(x) and C(x)?
2 How can we compute cn efficiently?

Answer 1: G = Set(C), hence G(x) = exp(C(x)).

Answer 2:

We saw that G(x) = exp(C(x)), or equivalently G(x)− 1 = exp(C(x))− 1

The series exp(x)− 1 has a composition inverse L(x) =
∑∞

n=1
(−1)n+1

n
xn (Taylor

series of ln(x + 1)).

Hence C(x) = L(G(x)− 1).

So cn = n![xn]L(G(x)− 1), which can be evaluated in time polynomial in n.
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gn . . . number of graphs on the vertex set [n] (so gn = 2
(

n
2

)
)

cn . . . number of connected graphs on the vertex set [n] (define c0 = 0)

G . . . labelled class of all graphs, G(x) = EGF(G)

C . . . labelled class of connected graphs, C(x) = EGF(C)

Questions:
1 What is the relationship between G(x) and C(x)?
2 How can we compute cn efficiently?

Answer 1: G = Set(C), hence G(x) = exp(C(x)).

Answer 2:

We saw that G(x) = exp(C(x)), or equivalently G(x)− 1 = exp(C(x))− 1

The series exp(x)− 1 has a composition inverse L(x) =
∑∞

n=1
(−1)n+1

n
xn (Taylor

series of ln(x + 1)).

Hence C(x) = L(G(x)− 1).

So cn = n![xn]L(G(x)− 1), which can be evaluated in time polynomial in n.



Example: graphs and components

Notation:

gn . . . number of graphs on the vertex set [n] (so gn = 2
(

n
2

)
)

cn . . . number of connected graphs on the vertex set [n] (define c0 = 0)

G . . . labelled class of all graphs, G(x) = EGF(G)

C . . . labelled class of connected graphs, C(x) = EGF(C)

Questions:
1 What is the relationship between G(x) and C(x)?
2 How can we compute cn efficiently?

Answer 1: G = Set(C), hence G(x) = exp(C(x)).

Answer 2:

We saw that G(x) = exp(C(x)), or equivalently G(x)− 1 = exp(C(x))− 1

The series exp(x)− 1 has a composition inverse L(x) =
∑∞

n=1
(−1)n+1

n
xn (Taylor

series of ln(x + 1)).

Hence C(x) = L(G(x)− 1).

So cn = n![xn]L(G(x)− 1), which can be evaluated in time polynomial in n.

Guest
FreeHand



Example: graphs and components

Notation:

gn . . . number of graphs on the vertex set [n] (so gn = 2
(

n
2

)
)

cn . . . number of connected graphs on the vertex set [n] (define c0 = 0)

G . . . labelled class of all graphs, G(x) = EGF(G)

C . . . labelled class of connected graphs, C(x) = EGF(C)

Questions:
1 What is the relationship between G(x) and C(x)?
2 How can we compute cn efficiently?

Answer 1: G = Set(C), hence G(x) = exp(C(x)).

Answer 2:

We saw that G(x) = exp(C(x)), or equivalently G(x)− 1 = exp(C(x))− 1

The series exp(x)− 1 has a composition inverse L(x) =
∑∞

n=1
(−1)n+1

n
xn (Taylor

series of ln(x + 1)).

Hence C(x) = L(G(x)− 1).

So cn = n![xn]L(G(x)− 1), which can be evaluated in time polynomial in n.

Guest
FreeHand

Guest
FreeHand



Example: graphs and components

Notation:

gn . . . number of graphs on the vertex set [n] (so gn = 2
(

n
2

)
)

cn . . . number of connected graphs on the vertex set [n] (define c0 = 0)

G . . . labelled class of all graphs, G(x) = EGF(G)

C . . . labelled class of connected graphs, C(x) = EGF(C)

Questions:
1 What is the relationship between G(x) and C(x)?
2 How can we compute cn efficiently?

Answer 1: G = Set(C), hence G(x) = exp(C(x)).

Answer 2:

We saw that G(x) = exp(C(x)), or equivalently G(x)− 1 = exp(C(x))− 1

The series exp(x)− 1 has a composition inverse L(x) =
∑∞

n=1
(−1)n+1

n
xn (Taylor

series of ln(x + 1)).

Hence C(x) = L(G(x)− 1).

So cn = n![xn]L(G(x)− 1), which can be evaluated in time polynomial in n.

Guest
FreeHand

Guest
FreeHand



Example: set partitions

Definition

A set partition of a vertex set V is a set of pairwise disjoint nonempty sets
{B1, . . . ,Bk}, called blocks, such that V = B1 ∪ B2 ∪ · · · ∪ Bk . Let pn be the number
of set partitions of the set [n]. Let P be the labelled comb. class of set partitions.

Remark: The elements of the sequence (pn)∞n=0 = 1, 1, 2, 5, 15, 52, 203, . . . are known
as the Bell numbers. There is no easy formula for them.

Goal: Formula for EGF(P) =
∑∞

n=0 pn
xn

n!
.

Define B as the class of partitions with a single block. Clearly
EGF(B) =

∑∞
n=1

xn

n!
= exp(x)− 1.

Setk (B) ∼= class of partitions with k blocks. EGF(Setk (B)) = (exp(x)−1)k

k!
.

P ∼= Set(B), hence

EGF(P) =
∞∑

k=0

(exp(x)− 1)k

k!
= exp(exp(x)− 1).
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Weighted classes

Definition

A weighted labelled combinatorial class is a pair (A,w) where A is a labelled comb.
class, and w : A→ K is a function such that for any two finite sets X ,Y ⊆ N of the
same cardinality, there is a weight-preserving bijection between objects on vertex set X
and objects on vertex set Y .
We then define

EGF(A,w) =
∞∑

n=0

 ∑
α∈An

w(α)

 xn

n!
=
∑
α∈A∗

w(α)
x |α|

|α|!
.

Union of two disjoint weighted labelled classes is defined as in the unlabelled case.

Labelled product of weighted labelled comb. classes (A,wA)⊗ (B,wB) is the
weighted labelled class (A⊗ B,w⊗), where w⊗((α, β)) = wA(α)wB(β).

EGF((A,wA)⊗ (B,wB)) = EGF(A,wA) EGF(B,wB).
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Example: cycles and permutations

Question: What is the expected number of cycles in a random permutation of [n]?

Notation:

pn,k . . . number of permutations of [n] with exactly k cycles

P . . . class of permutations. Clearly |Pn| = n!, hence
EGF(P) =

∑∞
n=0 n! xn

n!
= 1

1−x
.

C . . . class of permutations having 1 cycle. Define

C(x) := EGF(C) =
∞∑

n=0

pn,1
xn

n!
.

Note: pn,1 = (n − 1)!, hence

C(x) =
∞∑

n=0

xn

n
= − ln(1 + (−x)) = “ ln

(
1

1− x

)
”.

Note also, that permutations with exactly k cycles correspond to Setk (C) and
have EGF 1

k!
C(x)k , while P corresponds to Set(C) and hence

EGF(P) = exp(C(x)) =
1

1− x
.
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Example continued

Question: What is the expected number of cycles in a random permutation of [n]?

To answer the question, follow these steps:

1 To a permutation π ∈ P assign the weight w(π) = y c(π), where c(π) is the
number of cycles of π and y is a new formal variable.

2 Find formula for
P(x , y) := EGF(P,w) =

∑∞
n=0

∑n
k=0 pn,kyk xn

n!
=
∑
π∈P∗ y c(π) x|π|

|π|! .

3 Calculate

D(x , y) =
d
dy

P(x , y) =
∑
n,k

pn,kkyk−1 xn

n!

D(x , 1) =
∑
n,k

pn,kk
xn

n!

=
∞∑

n=0

(total number of cycles in permutations of [n])
xn

n!

[xn]D(x , 1) =
total number of cycles in permutations of [n]

n!

= expected number of cycles in a random permutation

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand



Example continued

Question: What is the expected number of cycles in a random permutation of [n]?

To answer the question, follow these steps:

1 To a permutation π ∈ P assign the weight w(π) = y c(π), where c(π) is the
number of cycles of π and y is a new formal variable.

2 Find formula for
P(x , y) := EGF(P,w) =

∑∞
n=0

∑n
k=0 pn,kyk xn

n!
=
∑
π∈P∗ y c(π) x|π|

|π|! .

3 Calculate

D(x , y) =
d
dy

P(x , y) =
∑
n,k

pn,kkyk−1 xn

n!

D(x , 1) =
∑
n,k

pn,kk
xn

n!

=
∞∑

n=0

(total number of cycles in permutations of [n])
xn

n!

[xn]D(x , 1) =
total number of cycles in permutations of [n]

n!

= expected number of cycles in a random permutation

Guest
FreeHand

Guest
FreeHand



Example continued

Question: What is the expected number of cycles in a random permutation of [n]?

To answer the question, follow these steps:

1 To a permutation π ∈ P assign the weight w(π) = y c(π), where c(π) is the
number of cycles of π and y is a new formal variable.

2 Find formula for
P(x , y) := EGF(P,w) =

∑∞
n=0

∑n
k=0 pn,kyk xn

n!
=
∑
π∈P∗ y c(π) x|π|

|π|! .

3 Calculate

D(x , y) =
d
dy

P(x , y) =
∑
n,k

pn,kkyk−1 xn

n!

D(x , 1) =
∑
n,k

pn,kk
xn

n!

=
∞∑

n=0

(total number of cycles in permutations of [n])
xn

n!

[xn]D(x , 1) =
total number of cycles in permutations of [n]

n!

= expected number of cycles in a random permutation

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand

Guest
FreeHand



Example finished

Question: What is the expected number of cycles in a random permutation of [n]?


