NMAI059 Probability and statistics 1 Class 4

Robert Šámal

Overview

Discrete r.v. – expectation and variance

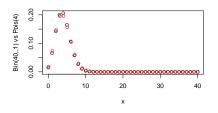
Parameters of discrete distributions

Random vectors

What we have learned

- What is a discrete r.v.
- How to describe it using a PMF and/or CDF.
- Examples of distributions: Bernoulli, binomial, hypergeometric, Poisson, geometric.
- Expectation: two possible definitions
- $\blacktriangleright \mathbb{E}(X) = \sum_{x \in Im(X)} x \cdot P(X = x)$
- $\blacktriangleright \mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$
- $ightharpoonup \mathbb{E}(g(X)) = \sum_{x \in Im(X)} g(x) P(X = x)$ (LOTUS)
- "How much we expect to get on average, when we repeat independent experiments with result given by X"... we will discuss later as the law of large numbers.

Comparing binomial and Poisson distribution: PMF



Generated by the following code in R

```
x = 0:40
bin = dbinom(x,40,0.1)
pois = dpois(x,4)
plot(x,bin, ylab="Bin(40,.1)_vs_Pois(4)")
points(x+.1,pois,col="red")
```

Properties of $\mathbb E$

Theorem

Suppose X,Y are discrete r.v. and $a,b \in \mathbb{R}$.

- 1. If $P(X \ge 0) = 1$ and $\mathbb{E}(X) = 0$, then P(X = 0) = 1.
- **2**. If $\mathbb{E}(X) \ge 0$ then $P(X \ge 0) > 0$.
- 3. $\mathbb{E}(a \cdot X + b) = a \cdot \mathbb{E}(X) + b$.
- $4. \ \mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Another formula for expectation

Theorem

Let X be a discrete r.v. such that $Im(X) \subseteq \mathbb{N}_0 = \{0, 1, 2, \dots\}$. Then we have

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n).$$

Variance

Definition

Variance of a r.v. X is the number $\mathbb{E}((X - \mathbb{E}X)^2)$. It is denoted by var(X).

Theorem

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Conditional expectation

Definition

Let X be a discrete r.v. and P(B) > 0. Conditional expectation of X given B is

$$\mathbb{E}(X \mid B) = \sum_{x \in Im(X)} x \cdot P(X = x \mid B),$$

whenever the sum is defined.

Law Of Total Expectation

Theorem

Suppose B_1, B_2, \ldots is a partition of Ω and $A \in \mathcal{F}$. Then

$$\mathbb{E}(X) = \sum_{i} P(B_i) \mathbb{E}(X \mid B_i),$$

whenever the sum is defined. (Terms with $P(B_i)=0$ are counted as 0.)

Law Of Total Expectation

Overview

Discrete r.v. - expectation and variance

Parameters of discrete distributions

Random vectors

Distribution parameters – Bernoulli

Pro $X \sim Bern(p)$ je

- $ightharpoonup \mathbb{E}(X) = p$
- $ightharpoonup var(X) = p p^2$

Distribution parameters – binomial

Pro $X \sim Bin(n, p)$ je

- $ightharpoonup \mathbb{E}(X) = np$
- ightharpoonup var(X) = np(1-p)
- First way: $X = \sum_{i=1}^{n} X_i$, where $X_i =$
- $\triangleright \mathbb{E}(X_i) = P(X_i = 1) =$
- Second way:

$$\mathbb{E}(X) = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1 - p)^{n-k}$$

Distribution parameters – hypergeometric

Pro $X \sim Hyper(N, K, n)$

- $\blacktriangleright \ \mathbb{E}(X) = n \frac{K}{N}$
- $var(X) = n\frac{K}{N}(1 \frac{K}{N})\frac{N-n}{N-1}$
- First way: $X = \sum_{i=1}^{n} X_i$, where $X_i =$
- $ightharpoonup \mathbb{E}(X_i) = P(X_i = 1) =$
- Second way: $X = \sum_{j=1}^{K} Y_j$, where $Y_j =$
- $\triangleright \mathbb{E}(Y_j) = P(Y_j = 1) =$

Distribution parameters – geometric

For $X \sim Geom(p)$ we have

- $ightharpoonup \mathbb{E}(X) = 1/p$
- $var(X) = \frac{1-p}{p^2}$

Distribution parameters – Poisson

Pro $X \sim Pois(\lambda)$ je

- $ightharpoonup \mathbb{E}(X) = \lambda$
- $ightharpoonup var(X) = \lambda$

Overview

Discrete r.v. – expectation and variance

Parameters of discrete distributions

Random vectors

Basic description of random vectors

- ▶ X, Y random variables on the same probability space (Ω, \mathcal{F}, P) .
- ▶ We wish to treat (X,Y) as one object a random vector.
- How to do that?
- Example: we roll twice a 4-sided dice, X = first outcome, Y = second one.

Joint distribution

Definition

For a discrete r.v. X, Y on a probability space (Ω, \mathcal{F}, P) we define their joint PMF $p_{X,Y} : \mathbb{R}^2 \to [0,1]$ by a formula

$$p_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) = x \& Y(\omega) = y).$$

• We can define it also for more than two r.v.'s $p_{X_1,...,X_n}(x_1,...,x_n)$.

Marginal distribution

▶ Given $p_{X,Y}$, how to find the distribution of each of the coordinates, that is p_X and p_Y ?

Independence of r.v.'s

Definition

Discrete r.v.'s X, Y are independent if for every $x,y\in\mathbb{R}$ the events $\{X=x\}$ a $\{Y=y\}$ are independent. That happens if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Product of independent r.v.'s

Theorem

For independent discrete r.v.'s X, Y we have

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

Function of a random vector

Theorem

Suppose X, Y are r.v.'s on (Ω, \mathcal{F}, P) , let $g : \mathbb{R}^2 \to \mathbb{R}$ be a function.

- ▶ Then Z = g(X,Y) is a r.v. on (Ω, \mathcal{F}, P)
- and it satisfies

$$\mathbb{E}(g(X,Y)) = \sum_{x \in ImX} \sum_{y \in ImY} g(x,y) P(X = x, Y = y),$$

whenever the sum is defined.

Theorem

For X, Y r.v.'s and $a, b \in \mathbb{R}$ we have

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$$

Proof of the theorem about variance

Sum of independent r.v.'s

• Given $p_{X,Y}$, how to find the distribution of the sum, Z = X + Y?

Sum of independent r.v.'s – convolution

Theorem

Let X, Y be discrete random variables. Then their sum Z = X + Y has PMF given by

$$P(Z = z) = \sum_{x \in Im(X)} P(X = x, Y = z - x).$$

If we further assume that X, Y are independent, then

$$P(Z=z) = \sum_{x \in Im(X)} P(X=x)P(Y=z-x).$$