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Overview

Discrete r.v. — expectation and variance



What we have learned
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What is a discrete r.v.
How to describe it using a PMF and/or CDF.

Examples of distributions: Bernoulli, binomial,
hypergeometric, Poisson, geometric.

Expectation: two possible definitions

E(X) = nge]m(X) z- P(X =)

E(X) =2 weq X (@) P({w})

E(9(X)) = > scrmx) 9(x)P(X = z) (LOTUS)

“How much we expect to get on average, when we repeat

independent experiments with result given by X” ... we
will discuss later as the law of large numbers.



Comparing binomial and Poisson distribution: PMF
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Bin(40,.1) vs Pois(4)
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Generated by the following code in R

x = 0:40

bin = dbinom(x,40,0.1)

pois = dpois(x,4)

plot(x,bin, ylab="Bin(40,.1)_vs_Pois(4)")
points (x+.1,pois,col="red")



Properties of E

Theorem
Suppose X,Y are discrete r.v. and a,b € R.

1. IfP(X >0)=1andE(X) =0, then P(X =0) = 1.
2. IFE(X) > 0 then P(X > 0) > 0.

3. E(a-X+b) =a-E(X)+0.

4. E(X+Y)=EX)+EY).



Another formula for expectation

Theorem

Let X be a discrete r.v. such that Im(X) C Ny = {0,1,2,...}.

Then we have -
E(X) =) P(X >n).
n=0



Variance

Definition
Variance of a r.v. X is the number E((X — EX)?). It is denoted
by var(X).

Theorem

var(X) = BE(X?) - B(X)?



Conditional expectation

Definition
Let X be a discrete r.v. and P(B) > 0. Conditional expectation
of X given B is

E(X|B)= Y «-P(X=z|B),
zeIm(X)

whenever the sum is defined.



Law Of Total Expectation

Theorem
Suppose B1, Bo, ... is a partition of Q and A € F. Then

ZP E(X | By),

whenever the sum is defined. (Terms with P(B;) = 0 are
counted as 0.)



Law Of Total Expectation



Overview

Parameters of discrete distributions



Distribution parameters — Bernoulli
Pro X ~ Bern(p) je
> E(X)=p
> var(X) =p - p?



Distribution parameters — binomial
Pro X ~ Bin(n,p) je
> E(X)=np
> var(X) =np(1l - p)

> Firstway: X =>"" | X;, where X; =
> E(X,)=P(X;=1)=

» Second way:
E(X) =Y hook-P(X =k) =30 o k(p)p"(1—p)"*



Distribution parameters — hypergeometric
Pro X ~ Hyper(N, K,n)
> E(X) =nf

> var(X) = n%(l — %)%:’f

> Firstway: X =>"" | X;, where X; =
> E(X;)=P(X;=1)=

> Second way: X = YU, Y}, where Y =
> E(Y;) = P(Y;=1) =



Distribution parameters — geometric
For X ~ Geom(p) we have
> E(X)=1/p
» var(X) = 1[);217



Distribution parameters — Poisson
Pro X ~ Pois(\) je
> E(X)=A\
> var(X) =\



Overview

Random vectors



Basic description of random vectors
» X, Y —random variables on the same probability space
(Q, F,P).
» We wish to treat (X,Y") as one object — a random vector.
» How to do that?

» Example: we roll twice a 4-sided dice, X = first outcome,
Y = second one.



Joint distribution

Definition
For a discrete r.v. X, Y on a probability space (2, F, P) we
define their joint PMF px y : R?> — [0, 1] by a formula

pxy(z,y) =PH{w e Q: X(w) =2&Y (w) =v).

» We can define it also for more than two r.v.s
le """" Xn($17“’7l‘n)'



Marginal distribution

» Given px,y, how to find the distribution of each of the
coordinates, that is px and py ?



Independence of r.v.’s

Definition

Discrete r.v.’s X, Y are independent if for every x,y € R the
events {X =z} a{Y =y} are independent. That happens if
and only if



Product of independent r.v.s

Theorem
For independent discrete r.v.'s X,Y we have

E(XY) = E(X)E(Y).



Function of a random vector

Theorem
Suppose X,Y arerv.'son (9, F,P), letg:R? — R be a
function.

» ThenZ =g(X,Y)isarv.on(Q,F,P)
» and it satisfies

EgX, V)= > Y g@yPX =zY =y),

zelmX yelmY

whenever the sum is defined.

Theorem
For X,Y rv'sanda,b € R we have

E(aX +bY) = aE(X) + bE(Y).



Proof of the theorem about variance



Sum of independent r.v.’s

» Given px y, how to find the distribution of the sum,
Z=X+Y?



Sum of independent r.v.’s — convolution

Theorem
Let X,Y be discrete random variables. Then their sum
Z = X +Y has PMF given by

P(Z=z= > PX=2Y=z-1)
zeIm(X)

If we further assume that X, Y are independent, then

P(Z=2z= > PX=2)PY =z-1).
zeIm(X)
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