
15

A. Speeding up addition and doubling

Let K be a field and let C be a smooth Weierstraß curve over K given by

x22 + a1x1x2 + a3x2 = x31 + a2x
2
1 + a4x1 + a6. (A.1)

Then all K-rational points of C together with ∞, the point at infinity, can be
interpreted as an abelian group. This group will be denoted by C(K), the addition
in this group by ⊕, the opposite elements by 	, and [m] will be used when the
addition is repeated m-times. The neutral element of C(K) is the point at infinity
∞. Thus α⊕∞ =∞⊕ α for all α ∈ C(K).

The group C(K) may be also interpreted as a group on all projective K-rational
points of C. Under this approach every affine K-rational point (α1, α2) is identified
with (α1 : α2 : 1), and ∞ with (0 : 1 : 0).

Suppose that α = (α1, α2) and β = (β1, β2) are K-rational affine points of C.
Then:

	α = (α1,−α2 − α1a1 − a3). (A.2)

If β = 	α, then β ⊕ α = ∞. Suppose that β 6= 	α. To define γ = α ⊕ β,
γ = (γ1, γ2), first set

λ =
3α2

1 + 2a2α1 − a1α2 + a4
2α2 + a1α1 + a3

if α = β, and λ =
β2 − α2

β1 − α1
if α 6= β. (A.3)

The value of γ1 depends upon λ, α1, β1, a1 and a2, and γ2 depends upon λ, γ1, a1
and a3:

(γ1, γ2) = (−α1 − β1 + λ2 + a1λ− a2, λ(α1 − γ1)− α2 − a1γ1 − a3). (A.4)

The formulas above describe what is known as the chord and tangent process.
Let us recall its properties:

(CT1) For each α = (α1, α2) ∈ C(K) there is at most one β = (β1, β2) ∈ C(K)
such that α1 = β1 and β 6= α. If such a β exists, then β = 	α. If no such
β exists, then [2]α = α⊕α =∞ and, thus, 	α = α. The latter happens if
and only if x1 = α yields the tangent line of C at α.

(CT2) Suppose that β 6= 	α. The choice of λ in (A.3) is such that there exists
a (unique) µ ∈ K for which x2 = λx1 + µ describes a line that is (1) the
tangent of C at α, provided α = β, and (2) connects α and β, provided
α 6= β.

(CT3) Assume β 6= 	α and γ = α ⊕ β = (γ1, γ2). We have α2 = λα1 + µ, µ =
α2−λα1 and γ = (γ1,−(λγ1+µ)−a1γ1−a3). Therefore 	 γ = (γ1, λγ1+µ),
by (A.2). All of the points α, β and 	 γ are incident to the line given by
x2 = λx1 + µ. Denote this line by L. It is a fact that L ∩ C = {α, β,	 γ}.

(CT4) These possibilities can occur:
• The points α, β and 	 γ are pairwise distinct.
• α 6= β and β = 	 γ. Then α⊕ [2]β =∞ and γ = 	β.
• α 6= β and α = 	 γ. Then [2]α⊕ β =∞ and γ = 	α.
• α = β and α 6= 	 γ. Then γ = [2]α.
• α = β = 	 γ. Then [3]α =∞ and γ = 	α = [2]α.

The natural question is how to perform efficiently both the addition α⊕β, and the
doubling [2]α. Note that the elliptic curve cryptography requires a computation of
[n]α for very large n. The point α is usually denoted by P . It remains stable, while
n varies. Standard algorithms, e.g. the sliding window, require many applications
of doubling. The doubling hence deserves the same attention as the addition of
distinct arguments.

For the rest of this section we shall assume that char(K) 6= 2 and that C is given
by x22 = x31 + ax1 + b. Thus a = a4, b = a6, a1 = a2 = a3 = 0 and 4a3 + 27b2 6= 0.



16

Then

	 (α1, α2) = (α1,−α2). (A.5)

This means that opposite elements are symmetric along the axis x1 (the line with
x2 = 0), and that (α1, α2) is of order two if and only if α2 = 0. An element of order
two is sometimes called an involution.

If α⊕ β 6=∞, then there exists γ = (γ1, γ2) such that γ = α⊕ β and

γ1 = λ2 − α1 − β1, γ2 = λ(α1 − γ1)− α2, where (A.6)

λ =
α2 − β2
α1 − β1

if α1 6= β1, and λ =
3α2

1 + a

2α2
if α1 = β1. (A.7)

Note that the parameter b = a6 has no bearing upon any of the formulas above.
Let us now consider the time needed to perform α ⊕ β, α 6= β, and to perform

[2]α. The time will be quantified in the number of needed arithmetical operations
over the field K. Typically, K is equal to Fp for p a large prime. This implies
that these operations are not built-in, but have to be algorithmically computed. If
ξ, η ∈ K, then there exist algorithms which compute ξ2 somewhat more quickly
then ξη. We shall use S for squaring ξ2, M for multiplying ξη, and I for inversion
ξ−1. An addition ξ+η and/or a subtraction ξ−η will be neglected since it is much
more quicker than multiplication.

The cost of α ⊕ β is I + 2M + S. Indeed, an inversion is needed to compute
(α1 − β1)−1. If this is done, then a multiplication is needed to get λ. A squaring
appears when computing γ1, and one more multiplication appears in the formula
that expresses γ2. Small multiples can be replaced by additions. That makes the
cost of doubling I + 2M + 2S.

To find an inversion modulo a prime means to employ the extended Euclidean
algorithm. This includes many multiplications. Hence replacing I by kM, where k
is fixed (and not too big) causes a significant speed-up. Such a speed-up is possible,
but at a price. The price is that a point α = (α1, α2) may be addressed in several
ways (using a triple or a quadruple instead of the pair (α1, α2)). That may pay
off only if there are many intermediary stages at which the lack of uniqueness of
point identification does not cause a difficulty. At the end an inversion usually
cannot be avoided if the goal is to get a uniquely determined result. However,
when computing [n]P , say in a cryptographic application, then the computation
uses many additions and doublings that are of intermediary character. For such
situations projective or Jacob or Chudonovski coordinates may be used.

A.1. Projective coordinates. The projective description of C is by the equation

X2
2X3 = X3

1 + aX1X
2
3 + bX3

3 . (A.8)

Let α = (α1 : α2 : α3) = (α1/α3 : α2/α3 : 1) and β = (β1 : β2 : β3) =
(β1/β3, β2/β3 : 1) be two distinct points on C. Assume that α ⊕ β 6= (0 : 1 : 0).
Then α⊕ β = γ = (γ1 : γ2 : γ3) = (γ1/γ3 : γ2/γ3 : 1). By (A.6)

γ1
γ3

= λ2 − α1

α3
− β1
β3

and
γ2
γ3

= λ

(
α1

α3
− γ1
γ3

)
− α2

α3
, (A.9)

where, by (A.7),

λ =
α2/α3 − β2/β3
α1/α3 − β1/β3

=
α2β3 − β2α3

α1β3 − β1α3
.

Put U = α2β3 − β2α3 and V = α1β3 − β1α3. The cost of computing U and V is
4M. The cost of computing

W = U2α3β3 − V 2(α1β3 + β1α3)



17

is 2S + 7M since α1β3 and β1α3 may be regarded as precomputed. Since α1β3 +
β1α3 = (β1α3 − α1β3) + 2α1β3 = −V + 2α1β3 we also have

W = U2α3β3 + V 3 − 2α1β3V
2. (A.10)

If this formula is followed, the cost of W is 2S + 8M.
Put γ3 = V 3α3β3. Note that λ = U/V . Then

γ1 = V (U2α3β3)− V 3(α1β3 + β1α3) = VW, and

γ2 = (U/V )(V 3α1β3 − VW )− V 3α2β3 = U(α1β3V
2 −W )− α2β3V

3.

Compute W by means of (A.10) and use precomputed values to get γ3, γ1 and γ2.
The cost is 1M, 1M and 2M, respectively. The overall cost of computing γ = (γ1, γ2)
thus amounts to 2S + 12M.

Formula (A.9) can be used for the doubling as well, with α = β. However, in
this case

λ =
3(α1/α3)2 + a

2α2/α3
=

3α2
1 + aα2

3

2α2α3
.

The form of γ2/γ3 suggests to choose γ3 as 8α3
2α

3
3. Then

γ1 = 2α2α3((3α2
1 + aα2

3)2 − 8α1α
2
2α3), and

γ2 = (3α2
1 + aα2

3)(4α1α
2
2α3 − γ1/2α2α3)− 8α4

2α
2
3

= (3α2
1 + aα2

3)(4α1α
2
2α3 − ((3α2

1 + aα2
3)2 − 8α1α

2
2α3))− 8α4

2α
2
3.

To compute γi, 1 ≤ i ≤ 3, it may be proceeded by computing (1) α2
1, (2) α2

3, (3)
U = 3α2

1 + aα2
3, (4) U2, (5) V = 2α2α3, (6) α2V , (7) V 2, (8) γ3 = V 3, (9) W =

U2−4α1α2V , (10) γ1 = VW , (11) (α2V )2 and (12) γ2 = U(2α1α2V −W )−2(α2V )2.
The cost of doubling hence is 5S + 7M. If a is small, then the cost of multiplying
by a may be regarded as negligible. In such a case the cost of doubling is equal to
5S + 6M.

When computing [n]P it often happens that the point P is being added to an
intermediary result. If the intermediary result is denoted by α, and the point P
as β, then β3 = 1 since P is given as an affine point. By inspecting the above
procedure for computing α ⊕ β it may be observed that it includes exactly three
instances of multiplying by β3. The cost of computing α ⊕ β is thus reduced to
2S + 9M if β3 = 1.


