
11

B. Basic arithmetic

Multiplication of integers by computers used to be slower than addition by factor
of 10 and more for many decades after the first computers have been constructed.
Nowadays the speed of addition and multiplication does not much differ when
performed in the length of computer word. This is not because the complexity of
multiplication has diminished, but because this complexity has been transformed to
hardware. In terms of tacts of the processor the multiplication needs two or three
tacts while the addition only one tact. However, due to pipelining the actually
observed behaviour may give an impression that the speed of multiplication is nearly
the same as the speed of addition. The speed-up of division does not seem to have
kept pace with the speed-up of multiplication. In microprocessors the divison takes
10 times more time than the multiplication, while the ratio in historical mainframes
used to be around 3.

Computations with very long integers rely upon software packages of multiple-
precision arithmetic. Since this arithmetic is realized by software and not by hard-
ware, there is no decline in importance of replacing multiplication by addition
whenever possible, and replacing division by multiplication whenever possible.

The division occurs naturally when working modulo p, p a large prime. The
naive algorithm of computing x times y modulo p goes by performing first the
multiplication of integers, and then taking the remainder of division by p.

The Montgomery arithmetic described below replaces the division by p by mul-
tiplications. The key concept is to replace each x mod p by xR mod p, where R
is an integer of special properties. Leaving implementation details aside, consider
the situation when each x ∈ Zp is represented in the memory of the computer by
X ≡ xR mod p. To represent z ≡ x+ y mod p an algorithm is needed that derives
Z ≡ zR mod p from X ≡ xR mod p and Y ≡ yR mod p. That is trivial since
Z ≡ X + Y mod p as xR+ yR = (x+ y)R.

What about xy mod p? Multiplying xR and yR modulo p yields ZR, where
Z ≡ (xy)R mod p. Finding an efficient method that derives Z from ZR hence
results into finding a way how to multiply efficiently modulo p, circumventing thus
the division by p.

The goal hence is to devise an algorithm that transforms an integer, say x, that
corresponds to ZR to an integer, say y, that corresponds to Z. The input restriction
is 0 ≤ x < pR. The output requires 0 ≤ y < p and x ≡ yR mod p, i.e. y = xR−1

(mod p). Such a transformation is known as Montgomery reduction.
Of course, an efficient Montgomery reduction is conceivable only under some

external assumption. The assumption here comes from the reality of computers.
The division by R requires much less resources if R is a power of two or, even better,
if R = bt, where b is the extent of the computer word (b = 232 or 264 etc.).

It will be thus assumed that R = bt > p and that the division by b (and thus
also by R) is ‘cheap’. No other external assumption is being made. The integer
b is considered as a basis and integers < p are represented as (at−1, . . . , a1, a0)b =∑
aib

i. Examples that rely on the pen and mental arithmetic may have b = 10 or
b = 100 etc.

The idea of Montgomery reduction is as follows: The residue class modulo p does
not change if x is replaced by x + xpq. Choose q so that pq ≡ −1 mod R. That
makes x+xpq divisible by R. Change now x+xpq in such a way that xq is replaced
by u = xq (mod R). This affects neither the residue class nor the divisibility by R.
Hence y = (x+up)/R is an integer, and yR ≡ x mod p. While there does not have
to be y < p, there has to be y < 2p if x < pR is assumed. This is because u < R
and because y < 2p may be expressed as 2pR > yR = x+ up.

The preceding observation will be recorded as a statement:



12

Lemma B.1. Let R > 1 be an integer, and let p, q ∈ ZR be such that pq ≡
−1 mod R, i.e. q = −p−1 (mod R). Let x be an integer such that 0 ≤ x < pR.
Put u = xq (mod R). Then R | up+x, and y = (up+x)/R fulfils both y < 2p and
yR ≡ x mod p.

Proof. Indeed, up+x ≡ xpq + x ≡ 0 mod R, and yR = up+x ≡ x mod p. Further-
more, yR = pu+ x < pR+ pR = 2pR. �

B.1. Montgomery arithmetic. Consider an algorithm that performs some task
in the arithmetic modulo p, with inputs a1, . . . , am and b1, . . . , bn. To implement
the algorithm by means of Montgomery arithmetic requires to determine R = bt > p
and q = −p−1 (mod R) in advance, and then, whenever the procedure is invoked,
to convert the inputs ai to Ai ≡ aiR mod p, to perform all arithmetical operations
of the procedure in this representation, and finally to convert each Bj ≡ bjR mod p
to bj at the time of output.

The Montgomery reduction x → y, where 0 ≤ x < pR, 0 ≤ y < p and x ≡
yR mod p, may be executed as suggested by Lemma B.1. That means to multiply
x and q, and reduce it modulo R. The computations are exercised in the basis
b. The reduction modulo R thus means to take the last t positions (i.e., the last
t computer words) of the product. This is denoted by u. The output is equal to
x = (x+ up)/R if x < p. If x ≥ p, then the output is equal to x− p.

The disadvantage of this approach is that it requires two long multiplications (of
x with q, and of u with p). A more efficient solution reduces this to a linear number
of multiplications of a long integer with an integer in the size of the computer word
(i.e., < b). It turns out that knowledge of q is not necessary. It suffices to know
q′ = −p−1 (mod b).

Suppose that x =
∑
xib

i, 0 ≤ xi < b. Let x be divisible by br, r ≥ 0. Thus
b0 = · · · = br−1 = 0. Set u = xrq

′ (mod b) and x′ = x + upbr. Counting modulo
br+1 shows that x′ ≡ xrbr + xrpq

′br ≡ xrbr + xr(−1)br ≡ 0. Hence br+1 divides x′,
and x′−x < pbr+1 is a multiple of pbr. Proceeding inductively from r = 0 increases
x in k steps by an integer vp, where 0 ≤ v < bk. The Montgomery reduction can
be thus performed as follows:

INPUT: x =
∑
i xib

i ≤ pR, 0 ≤ i ≤ 2t− 1, 0 ≤ xi < b.
OUTPUT: An integer y with 0 ≤ y < p and yR ≡ x mod R.
PARAMETERS: p, b, t, R, where R = bt > p,

q′, where q′p ≡ −1 mod b and 0 < q′ < p.
VARIABLES: i, u, 0 < u < p.

i=0;

while (i < t) do:

u = xiq
′ (mod b);

x = x+ pubi;
i = i+ 1;

y = x/R;
if (y > p) then y = y − p;
return y.

Each multiplication in Montgomery arithmetics ends by the reduction. The
efficiency may be raised by integrating both of these steps in an ensuing algorithm.
The justification follows the description. Parameters and variable are the same as
in the preceding algorithm.

INPUT: x =
∑
i xib

i < p, y =
∑
i yib

i < p.
OUTPUT: An integer z =

∑
i zib

i < p such that zR ≡ xy mod R.



13

i=0;

z=0;

while (i < t) do:

u = (z0 + xiy0)q′ (mod b);
z = (z + xiy + pu)/b;
i = i+ 1;

if (z > p) then z = z − p;
return z.

To justify the division by b note that while counting modulo b

z + xiy + pu ≡ z0 + xiy0 + pu ≡ z0 + xiy0 + pq′(z0 + xiy0) ≡ 0

since pq′ ≡ −1 mod b. To see that the procedure does what declared denote by z̄i
the value of z after the ith round. Thus z̄t is equal to the output from the cycle.
Put x̄i =

∑
j<i xjb

j and note that x̄t = x. The claim to verify is that there exists
integer vi such that

0 ≤ z̄ibi − x̄iy = pvi and vi < bi.

In the first step u = x̄1y0q
′ (mod b) since x̄1 = x0 and z̄1b − x̄1y = pu. The

condition thus holds for i = 1. For the induction step first observe that z̄i+1b
i+1 =

z̄ib
i + xiyb

i + pubi and x̄i+1y = xiyb
i + x̄+ iy. By the induction assumption

z̄i+1b
i+1 − x̄i+1y = z̄ib

i − x̄iy + pubi = p(vi + ubi).

Therefore vi+1 = vi +ubi < bi+1. By the final step, 0 ≤ zR−xy = pvt < pR. Thus
zR ≡ xy mod p and zR < pR+ p2 < 2pR.

Recall that in Montgomery arithmetic the procedure above is invoked with inputs
X ≡ xR mod p and Y ≡ yR mod p, and the output is equal to Z ≡ xyR mod p.
In each step there are two multiplications of the form (long integer) × (computer
word), and there is no multiplication of two long integers.

Note that whenever Montgomery arithmetic is applied, there is an initial cost of
multiplying the inputs by R modulo p.

The final remark concerning the Montgomery arithmetic is about the computa-
tion of q′. The question thus is how to compute p−1 (mod b) efficiently. In general
the inverses may be computed by means of extended Euclidean algorithm. However,
if b = 2w, then there exists a more efficient procedure:

INPUT: An odd integer x, 0 < x < 2w.
OUTPUT: Integer y such that yx ≡ 1 mod 2w, 0 < y < 2w.
PARAMETER: Integer w ≥ 1.
VARIABLES: Integers i, j, u.

y = 1;
i = 1;
while (i < w) do:

j = i+ 1;
u = xy (mod 2j);
if (2i < u) then y = y + 2i;
i = j;

return y.
To prove the correctness denote by yi the value of y at the end of the ith round

and set y0 = 1. Thus y = yw−1. The algorithm clearly implies that yi < 2i+1. It
thus suffices to verify that xyi ≡ 1 mod 2i+1. For i = 0 this is true because x is
odd.



14

Suppose that i ≥ 1. By the induction assumption xyi−1 ≡ 1 mod 2i. Hence
xyi−1 (mod 2i+1) is equal to 1 or to 1 + 2i. In the former case yi = yi−1. In the
latter case yi = yi−1 + 2i and xyi ≡ xyi−1 + 2i ≡ 1 mod 2i+1.


