1. Let d > 1 and let $C_d(h), h \in \mathbb{R}^d$, be an autocovariance function of a random field $\{Z(u), u \in \mathbb{R}^d\}$, i.e. C_d is a positive semidefinite function on \mathbb{R}^d . Assume that the random field is stationary and isotropic and hence $C_d(h) = f(||h||_d), h \in \mathbb{R}^d$, for some function $f : [0, \infty) \to \mathbb{R}$, where $||h||_d$ denotes the *d*-dimensional Euclidean norm. For $1 \le k < d$ define $C_k(u) = f(||u||_k), u \in \mathbb{R}^k$. Prove that C_k is the autocovariance function of some random field $\{Y(u), u \in \mathbb{R}^k\}$.

Stationarity:
$$C_{d}(x,y) = C_{d}(y-x)$$
, $x_{ij} \in \mathbb{R}^{d}$
Isotropy: $C_{d}(x,y) = C_{d}(|y-x||_{U})$
assume: $C_{d}(x,y) = C_{d}(|y-x||_{U})$
assume: $C_{d}(x,y) = C_{d}(|y-x||_{U})$
desime $C_{d}(x) = f(||x||_{U})$, $x_{ij} \in \mathbb{P}^{2}$
desime $C_{q}(x) = f(||x||_{Q})$, $w \in \mathbb{R}^{2}$
if: $Io_{i}o_{i}> \to \mathbb{R}$
desime $C_{q}(x) = f(||w||_{Q})$, $w \in \mathbb{R}^{2}$
if: $Io_{i}o_{i}> \to \mathbb{R}$
desime $C_{q}(x) = f(||w||_{Q})$, $w \in \mathbb{R}^{2}$
if: $Io_{i}o_{i}> \to \mathbb{R}$
desime $C_{q}(x) = f(||w||_{Q})$, $w \in \mathbb{R}^{2}$
if: $Io_{i}o_{i}> \to \mathbb{R}$
if: $Io_{i}o_{i}>$