NMAI059 Probability and statistics 1 Class 3

Robert Šámal

Overview

Discrete random variables

Examples of discrete r.v.'s

Expectation

Random variable

Often we are interested in a number given as a result of a random experiment.

- We throw a dart and measure the distance from the center of the dartboard.
- We roll a die until we get a six, then count how many rolls it took.
- In a quicksort algorithm (with a random choice of pivot) we measure the number of operations.

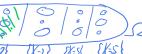
Definition

Given a probability space (Ω, \mathcal{F}, P) . We call a function $X:\Omega \to \mathbb{R}$ a discrete random variable, if Im(X) (range of X) is a countable set and if for every real X we have

$$P(X \text{ essums value } x) = \{\underline{\omega \in \Omega} : \underline{X(\omega)} = x\} \in \mathcal{F}.$$

$$P(X \text{ essums value } x) = P(\underline{X} = x) = f(x) \text{ is only define of } \{X : x\} \in \mathcal{F}.$$

PMF



Definition

Probability mass function, PMF of a discrete random variable Xis a function $p_X : \mathbb{R} \to [0,1]$ such that

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

- $\sum_{x \in Im(X)} p_X(x) = ? \cancel{1}$ $\sum_{x \in Im(X)} p_X(x) = ? \cancel{1$
 - satisfying $\sum_{i \in I} c_i = 1$ there is a probability space and a discrete r.v. X on it such that $p_X(s_i) = c_i$ for $i \in I$.

Another description - CDF

Definition

Cumulative distribution function, CDF of a r.v. X is a function

$$F_X(x) := P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- $ightharpoonup F_X$ is a nondecreasing function

 $ightharpoonup F_X$ is right-continuous

B. Su: X(4)=95 A=8

$$A_1 = A_2 = A_3 = \dots$$

$$UA_n = \Omega$$

$$VA_n = \Omega$$

Overview

Discrete random variables

Examples of discrete r.v.'s

Expectation

Bernoulli/alternate distribution

- ightharpoonup X = number of tails in one toss of a coin (not necessary a fair one)
- ▶ We write $X \sim Bern(p)$. (Sometimes Alt(p).)

- $p_X(k) = 0 \text{ for } k \neq 0, 1$

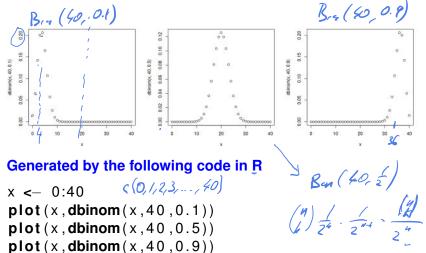
- For an event $A \in \mathcal{F}$ we define *indicator random variable* I_A :
- ▶ $I_A(\omega) = 1$ if $\omega \in A$, $I_A(\omega) = 0$ otherwise.
- $ightharpoonup I_A \sim Bern(P(A))$

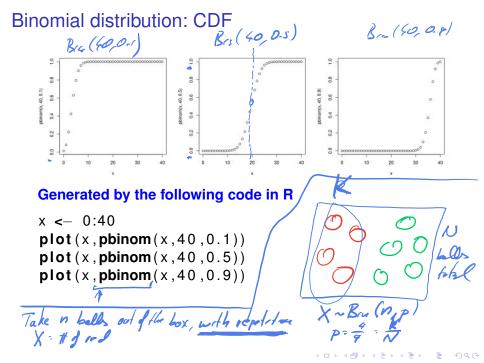
Binomial distribution

- $ightharpoonup X = ext{number of tails in } n ext{ independent tosses of a loaded coin.}$
- ▶ Given $p \in [0,1]$.
- ▶ We write $X \sim Bin(n, p)$.

- We was a T
- $ilde{\ } X = \sum_{i=1}^n \underline{X}_i$ for independent r.v.'s $X_1, \ldots, X_n \sim Bern(p)$.
- $p_{X}(k) = \binom{n}{k} p^{k} (1-p)^{n-k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$ $p(\binom{n-k}{k}) = \binom{n-k}{k} \text{ for } k \in \{0,1,\ldots,n\}$

Binomial distribution: PMF





Hypergeometric distribution

lacktriangleq X = the number of red balls we get out of n, when the urn contains K red out of N balls

- ▶ Given n, N, K.
- ▶ We write $X \sim Hyper(N, K, n)$.

Luce from other classes

Poisson distribution

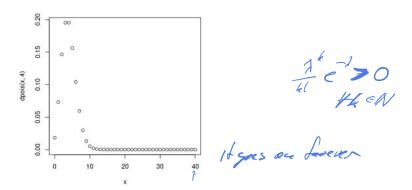
- We write $X \sim Pois(\lambda)$.
- ▶ Given real $\lambda > 0$.
- fixed 1 $ightharpoonup Pois(\lambda)$ is a limit of $Bin(n, \lambda/n)$

X describes, e.g., the number of emails we get in a day. for every fixed & =>

$$\binom{n}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k} = \frac{\binom{n}{n} \binom{n-1}{n} \binom{n-k}{n}}{k!}$$

1.1. e-7.1-P(X=4)

Poisson distribution: PMF



Generated by the following code in R

$$x \leftarrow \underline{seq}(0,40,\underline{by=1})$$
 \sim 0.40 plot $(x,dpois(x,4))$

Poisson paradigm

▶ A_1, \ldots, A_n are (almost-)independent events with $P(A_i) = p_i, \lambda = \sum_i p_i$. Suppose n is large, each of p_i small. Then it is approximately true that

$$\sum_{i=1}^{n} I_{A_i} \sim Pois(\lambda).$$
Is good to wall note events

Geometric distribution

(udepadent)

- ▶ X = number of coin tosses till we get a tail ▶ We write $X \sim Geom(p)$.

- ▶ Given $p \in [0,1]$. P(head (k-1) fram)

 ▶ $p_X(k) = (1-p)^{k-1}p$, for $k=1,2,\ldots$
- P(X=4)"
- Some people call this distribution shifted geometric, the normal geometric would then be distribution of X-1, that is the number of unsuccessful tosses.

Overview

Discrete random variables

Examples of discrete r.v.'s

Expectation

Expectation

Definition Given a discrete r.v. X, its expectation is denoted by $\mathbb{E}(X)$ and defined by

$$\mathbb{E}(X) = \sum_{x \in Im(X)} x \cdot \underline{P(X = x)},$$

whenever the sum is defined.

Suppose X is defined on a discrete space (Ω, \mathcal{F}, P) . Then we can also define the expectation by the following formula:

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\}).$$

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega).$$

Law Of The Unconscious Statistician (((a))

 \blacktriangleright For a real function g and a discrete r.v. X, the function

Y = g(X) is also a discrete r.v.

Theorem (LOTUS)

For a real function g and a discrete r.v. X, we have

$$\mathbb{E}(g(X)) = \sum_{x \in Im(X)} g(x)P(X = x)$$

whenever the sum is defined.

$$|E(t)| = \sum_{y \in Lt} g \cdot \underline{P(t-y)}$$

Properties of $\mathbb E$

Theorem

Suppose X,Y are discrete r.v. and $a,b \in \mathbb{R}$.

- 1. If $P(X \ge 0) = 1$ and $\mathbb{E}(X) = 0$, then P(X = 0) = 1.
- **2**. If $\mathbb{E}(X) \ge 0$ then $P(X \ge 0) > 0$.
- 3. $\mathbb{E}(a \cdot X + b) = a \cdot \mathbb{E}(X) + b$.
- $4. \ \mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Variance

Definition

Variance of a r.v. X is the number $\mathbb{E}((X - \mathbb{E}X)^2)$. It is denoted by var(X).

Theorem

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Conditional expectation

Definition

Let X be a discrete r.v. and P(B) > 0. Conditional expectation of X given B is

$$\mathbb{E}(X \mid B) = \sum_{x \in Im(X)} x \cdot P(X = x \mid B),$$

whenever the sum is defined.

Law Of Total Expectation

Theorem

Suppose B_1, B_2, \ldots is a partition of Ω and $A \in \mathcal{F}$. Then

$$\mathbb{E}(X) = \sum_{i} \mathbb{E}(X \mid B_i) P(B_i),$$

whenever the sum is defined. (Terms with $P(B_i)=0$ are counted as 0.)

Law Of Total Expectation