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Random variable
Often we are interested in a number given as a result of a
random experiment.
I We throw a dart and measure the distance from the center

of the dartboard.
I We roll a die until we get a six, then count how many rolls it

took.
I In a quicksort algorithm (with a random choice of pivot) we

measure the number of operations.

Definition
Given a probability space (Ω,F , P ). We call a function
X : Ω→ R a discrete random variable, if Im(X) (range of X) is
a countable set and if for every real x we have

{ω ∈ Ω : X(ω) = x} ∈ F .





PMF

Definition
Probability mass function, PMF of a discrete random variable X
is a function pX : R→ [0, 1] such that

pX(x) = P (X = x) = P ({ω ∈ Ω : X(ω) = x})

I
∑

x∈Im(X) pX(x) = ?

I S := Im(X) Q(A) :=
∑

x∈A pX(x)
(S,P(S), Q) is a discrete probability space.

I For S = {si : i ∈ I} countable set of reals and ci ∈ [0, 1]
satisfying

∑
i∈I ci = 1 there is a probability space and a

discrete r.v. X on it such that pX(si) = ci for i ∈ I.





























Another description – CDF

Definition
Cumulative distribution function, CDF of a r.v. X is a function

FX(x) := P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x).

I FX is a nondecreasing function
I limx→−∞ FX(x) = 0

I limx→+∞ FX(x) = 1

I FX is right-continuous
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Bernoulli/alternate distribution
I X = number of tails in one toss of a coin (not necessary a

fair one)
I We write X ∼ Bern(p). (Sometimes Alt(p).)

I Given p ∈ [0, 1].
I pX(1) = p

I pX(0) = 1− p
I pX(k) = 0 for k 6= 0, 1

I For an event A ∈ F we define indicator random variable IA:
I IA(ω) = 1 if ω ∈ A, IA(ω) = 0 otherwise.
I IA ∼ Bern(P (A))









Binomial distribution
I X = number of tails in n independent tosses of a loaded

coin.
I Given p ∈ [0, 1].
I We write X ∼ Bin(n, p).

I X =
∑n

i=1Xi for independent r.v.’s X1, . . . , Xn ∼ Bern(p).
I pX(k) =

(
n
k

)
pk(1− p)n−k for k ∈ {0, 1, . . . , n}







Binomial distribution: PMF

Generated by the following code in R

x <− 0:40
plot ( x , dbinom ( x , 4 0 , 0 . 1 ) )
plot ( x , dbinom ( x , 4 0 , 0 . 5 ) )
plot ( x , dbinom ( x , 4 0 , 0 . 9 ) )















Binomial distribution: CDF

Generated by the following code in R

x <− 0:40
plot ( x , pbinom ( x , 4 0 , 0 . 1 ) )
plot ( x , pbinom ( x , 4 0 , 0 . 5 ) )
plot ( x , pbinom ( x , 4 0 , 0 . 9 ) )



















Hypergeometric distribution
I X = the number of red balls we get out of n, when the urn

contains K red out of N balls
I Given n, N , K.
I We write X ∼ Hyper(N,K, n).

I pX(k) = P (X = k) =
(Kk )(N−K

n−k )
(Nn)













Poisson distribution
I We write X ∼ Pois(λ).

I Given real λ > 0.
I pX(k) = λk

k! e
−λ

I Pois(λ) is a limit of Bin(n, λ/n)

I X describes, e.g., the number of emails we get in a day.























Poisson distribution: PMF

Generated by the following code in R

x <− seq (0 ,40 ,by=1)
plot ( x , dpois ( x , 4 ) )





Poisson paradigm
I A1, . . . , An are (almost-)independent events with
P (Ai) = pi, λ =

∑
i pi. Suppose n is large, each of pi

small. Then it is approximately true that

n∑
i=1

IAi ∼ Pois(λ).





Geometric distribution
I X = number of coin tosses till we get a tail
I We write X ∼ Geom(p).

I Given p ∈ [0, 1].
I pX(k) = (1− p)k−1p, for k = 1, 2, . . .

I Some people call this distribution shifted geometric, the
normal geometric would then be distribution of X − 1, that
is the number of unsuccessful tosses.
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Expectation

Definition
Given a discrete r.v. X, its expectation is denoted by E(X) and
defined by

E(X) =
∑

x∈Im(X)

x · P (X = x),

whenever the sum is defined.

I Suppose X is defined on a discrete space (Ω,F , P ). Then
we can also define the expectation by the following
formula:

E(X) =
∑
ω∈Ω

X(ω)P ({ω}).

















Law Of The Unconscious Statistician
I For a real function g and a discrete r.v. X, the function
Y = g(X) is also a discrete r.v.

Theorem (LOTUS)
For a real function g and a discrete r.v. X, we have

E(g(X)) =
∑

x∈Im(X)

g(x)P (X = x)

whenever the sum is defined.













Properties of E

Theorem
Suppose X,Y are discrete r.v. and a, b ∈ R.

1. If P (X ≥ 0) = 1 and E(X) = 0, then P (X = 0) = 1.
2. If E(X) ≥ 0 then P (X ≥ 0) > 0.
3. E(a ·X + b) = a · E(X) + b.
4. E(X + Y ) = E(X) + E(Y ).



Variance

Definition
Variance of a r.v. X is the number E((X − EX)2). It is denoted
by var(X).

Theorem

var(X) = E(X2)− E(X)2



Conditional expectation

Definition
Let X be a discrete r.v. and P (B) > 0. Conditional expectation
of X given B is

E(X | B) =
∑

x∈Im(X)

x · P (X = x | B),

whenever the sum is defined.



Law Of Total Expectation

Theorem
Suppose B1, B2, . . . is a partition of Ω and A ∈ F . Then

E(X) =
∑
i

E(X | Bi)P (Bi),

whenever the sum is defined. (Terms with P (Bi) = 0 are
counted as 0.)



Law Of Total Expectation
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