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Overview

Discrete random variables



Random variable

Often we are interested in a number given as a result of a
random experiment.

» We throw a dart and measure the distance from the center
of the dartboard.

» We roll a die until we get a six, then count how many rolls it
took.

» In a quicksort algorithm (with a random choice of pivot) we
measure the number of operations.

Definition
Given a probability space (2, F, P). We call a function

X : Q — R adiscrete random variable, if Im(X) (range of X ) is
a countable set and if for every real x we have

{we: X(w)=2z}€eF.



PMF

Definition
Probability mass function, PMF of a discrete random variable X
is a function px : R — [0, 1] such that

px(x) = P(X = 2) = P({w € Q: X(w) = 2})

> erlm(X) px(.%') =7

> S:=1Im(X)  Q(A) = carx(®)
(S,P(S),Q) is a discrete probability space.

» For S = {s; : i € I} countable set of reals and ¢; € [0, 1]
satisfying > ,.; c; = 1 there is a probability space and a
discrete r.v. X on it such that px(s;) = ¢; fori € I.



Another description — CDF

Definition
Cumulative distribution function, CDF of a r.v. X is a function

Fx(z):=P(X <z)=P{we: X(w) <uz).

» Fx is a nondecreasing function
» lim, o Fx(x) =0

> lim, 00 Fx(z) =1

> [y is right-continuous
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Bernoulli/alternate distribution

» X = number of tails in one toss of a coin (not necessary a
fair one)

» We write X ~ Bern(p). (Sometimes Alt(p).)

» Given p € [0, 1].

> px(1)=p

> px(0)=1-p

» px(k)=0fork #£0,1

» For an event A € F we define indicator random variable 1 4:
» [4(w)=1ifwe A, I4(w) = 0 otherwise.

» [4 ~ Bern(P(A))



Binomial distribution
» X = number of tails in n independent tosses of a loaded
coin.
» Given p € [0, 1].
» We write X ~ Bin(n,p).

> X =>" X, forindependentr.v’s X,..., X, ~ Bern(p).
> px (k)= ()p*(1 —p)*Ffork € {0,1,...,n}



Binomial distribution: PMF
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Generated by the following code in R

x <— 0:40

plot (x,dbinom(x,40,0.1))
plot(x,dbinom(x,40,0.5
plot(x,dbinom(x,40,0.9))
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Binomial distribution: CDF
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Generated by the following code in R

x <— 0:40

plot (x,pbinom(x,40,0.1))
plot (x,pbinom(x,40,0.5
plot (x,pbinom(x,40,0.9))
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Hypergeometric distribution

» X = the number of red balls we get out of n, when the urn
contains K red out of N balls

» Givenn, N, K.
» We write X ~ Hyper(N, K,n).

> px(k):P(X:k):w



Poisson distribution
» We write X ~ Pois(\).

> Givenreal \ > 0.
k

» Pois()) is a limit of Bin(n, \/n)

» X describes, e.g., the number of emails we get in a day.



Poisson distribution: PMF
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Generated by the following code in R

X <— seq(0,40,by=1)
plot (x,dpois(x,4))



Poisson paradigm

> Ai,..., A, are (almost-)independent events with
P(A;) = pi, A =), pi. Suppose n is large, each of p;
small. Then it is approximately true that

> 1, ~ Pois()).
=1



Geometric distribution

» X = number of coin tosses till we get a tail
> We write X ~ Geom(p).

» Given p € [0, 1].
> pX(k) = (]‘ _p)k_lp! for k = 1)2) e

» Some people call this distribution shifted geometric, the
normal geometric would then be distribution of X — 1, that
is the number of unsuccessful tosses.
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Expectation

Definition
Given a discrete r.v. X, its expectation is denoted by E(X) and
defined by

E(X)= Y x-P(X=ux),

zeIm(X)
whenever the sum is defined.

» Suppose X is defined on a discrete space (2, F, P). Then
we can also define the expectation by the following

formula:
=) X(w)P({w}).

wes



Law Of The Unconscious Statistician

» For areal function g and a discrete r.v. X, the function
Y = ¢g(X) is also a discrete r.v.

Theorem (LOTUS)
For a real function g and a discrete r.v. X, we have

E(g(X))= > gx)P(X =x)

zeIm(X)

whenever the sum is defined.



Properties of E

Theorem
Suppose X,Y are discrete r.v. and a,b € R.

1. IfP(X >0)=1andE(X) =0, then P(X =0) = 1.
2. IFE(X) > 0 then P(X > 0) > 0.

3. E(a-X+b) =a-E(X)+0.

4. E(X+Y)=EX)+EY).



Variance

Definition
Variance of a r.v. X is the number E((X — EX)?). It is denoted
by var(X).

Theorem

var(X) = BE(X?) - B(X)?



Conditional expectation

Definition
Let X be a discrete r.v. and P(B) > 0. Conditional expectation
of X given B is

E(X|B)= Y «-P(X=z|B),
zeIm(X)

whenever the sum is defined.



Law Of Total Expectation

Theorem
Suppose B1, Bo, ... is a partition of Q and A € F. Then

E(X) = ZE(X | B;))P(By),

whenever the sum is defined. (Terms with P(B;) = 0 are
counted as 0.)



Law Of Total Expectation
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