NMAI059 Probability and statistics 1 Class 3

Robert Šámal

Overview

Discrete random variables

Examples of discrete r.v.s

Expectation

Random variable

Often we are interested in a number given as a result of a random experiment.

- We throw a dart and measure the distance from the center of the dartboard.
- We roll a die until we get a six, then count how many rolls it took.
- In a quicksort algorithm (with a random choice of pivot) we measure the number of operations.

Definition

Given a probability space (Ω, \mathcal{F}, P). We call a function $X: \Omega \rightarrow \mathbb{R}$ a discrete random variable, if $\operatorname{Im}(X)$ (range of X) is a countable set and if for every real x we have

$$
\{\omega \in \Omega: X(\omega)=x\} \in \mathcal{F} .
$$

PMF

Definition
Probability mass function, PMF of a discrete random variable X is a function $p_{X}: \mathbb{R} \rightarrow[0,1]$ such that

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega: X(\omega)=x\})
$$

- $\sum_{x \in \operatorname{Im}(X)} p_{X}(x)=?$
- $S:=\operatorname{Im}(X) \quad Q(A):=\sum_{x \in A} p_{X}(x)$
$(S, \mathcal{P}(S), Q)$ is a discrete probability space.
- For $S=\left\{s_{i}: i \in I\right\}$ countable set of reals and $c_{i} \in[0,1]$ satisfying $\sum_{i \in I} c_{i}=1$ there is a probability space and a discrete r.v. X on it such that $p_{X}\left(s_{i}\right)=c_{i}$ for $i \in I$.

Another description - CDF

Definition
Cumulative distribution function, CDF of a r.v. X is a function

$$
F_{X}(x):=P(X \leq x)=P(\{\omega \in \Omega: X(\omega) \leq x) .
$$

- F_{X} is a nondecreasing function
- $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
- $\lim _{x \rightarrow+\infty} F_{X}(x)=1$
- F_{X} is right-continuous

Overview

Discrete random variables

Examples of discrete r.v.'s

Expectation

Bernoulli/alternate distribution

- $X=$ number of tails in one toss of a coin (not necessary a fair one)
- We write $X \sim \operatorname{Bern}(p)$. (Sometimes $\operatorname{Alt}(p)$.)
- Given $p \in[0,1]$.
- $p_{X}(1)=p$
- $p_{X}(0)=1-p$
- $p_{X}(k)=0$ for $k \neq 0,1$
- For an event $A \in \mathcal{F}$ we define indicator random variable I_{A} :
- $I_{A}(\omega)=1$ if $\omega \in A, I_{A}(\omega)=0$ otherwise.
- $I_{A} \sim \operatorname{Bern}(P(A))$

Binomial distribution

- $X=$ number of tails in n independent tosses of a loaded coin.
- Given $p \in[0,1]$.
- We write $X \sim \operatorname{Bin}(n, p)$.
- $X=\sum_{i=1}^{n} X_{i}$ for independent r.v.'s $X_{1}, \ldots, X_{n} \sim \operatorname{Bern}(p)$.
- $p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k \in\{0,1, \ldots, n\}$

Binomial distribution: PMF

Generated by the following code in R
$x<-0: 40$
plot (x, dbinom (x, 40, 0.1))
plot ($x, \operatorname{dbinom}(x, 40,0.5)$)
plot (x, dbinom(x, 40, 0.9))

Binomial distribution: CDF

Generated by the following code in \mathbf{R}
$x<-0: 40$
plot (x,pbinom(x,40,0.1))
plot (x, pbinom (x, 40, 0.5))
plot (x, pbinom (x, 40, 0.9))

Hypergeometric distribution

- $X=$ the number of red balls we get out of n, when the urn contains K red out of N balls
- Given n, N, K.
- We write $X \sim \operatorname{Hyper}(N, K, n)$.
- $p_{X}(k)=P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$

Poisson distribution

- We write $X \sim \operatorname{Pois}(\lambda)$.
- Given real $\lambda>0$.
- $p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$
- $\operatorname{Pois}(\lambda)$ is a limit of $\operatorname{Bin}(n, \lambda / n)$
- X describes, e.g., the number of emails we get in a day.

Poisson distribution: PMF

Generated by the following code in \mathbf{R}
$x<-\operatorname{seq}(0,40, b y=1)$
plot(x, dpois($x, 4)$)

Poisson paradigm

- A_{1}, \ldots, A_{n} are (almost-)independent events with $P\left(A_{i}\right)=p_{i}, \lambda=\sum_{i} p_{i}$. Suppose n is large, each of p_{i} small. Then it is approximately true that

$$
\sum_{i=1}^{n} I_{A_{i}} \sim \operatorname{Pois}(\lambda)
$$

Geometric distribution

- $X=$ number of coin tosses till we get a tail
- We write $X \sim \operatorname{Geom}(p)$.
- Given $p \in[0,1]$.
- $p_{X}(k)=(1-p)^{k-1} p$, for $k=1,2, \ldots$
- Some people call this distribution shifted geometric, the normal geometric would then be distribution of $X-1$, that is the number of unsuccessful tosses.

Overview

Discrete random variables

Examples of discrete r.v.s

Expectation

Expectation

Definition
Given a discrete r.v. X, its expectation is denoted by $\mathbb{E}(X)$ and defined by

$$
\mathbb{E}(X)=\sum_{x \in \operatorname{Im}(X)} x \cdot P(X=x)
$$

whenever the sum is defined.

- Suppose X is defined on a discrete space (Ω, \mathcal{F}, P). Then we can also define the expectation by the following formula:

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) P(\{\omega\})
$$

Law Of The Unconscious Statistician

- For a real function g and a discrete r.v. X, the function $Y=g(X)$ is also a discrete r.v.

Theorem (LOTUS)
For a real function g and a discrete r.v. X, we have

$$
\mathbb{E}(g(X))=\sum_{x \in \operatorname{Im}(X)} g(x) P(X=x)
$$

whenever the sum is defined.

Properties of \mathbb{E}

Theorem
Suppose X, Y are discrete r.v. and $a, b \in \mathbb{R}$.

1. If $P(X \geq 0)=1$ and $\mathbb{E}(X)=0$, then $P(X=0)=1$.
2. If $\mathbb{E}(X) \geq 0$ then $P(X \geq 0)>0$.
3. $\mathbb{E}(a \cdot X+b)=a \cdot \mathbb{E}(X)+b$.
4. $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$.

Variance

Definition
Variance of a r.v. X is the number $\mathbb{E}\left((X-\mathbb{E} X)^{2}\right)$. It is denoted by $\operatorname{var}(X)$.

Theorem

$$
\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}
$$

Conditional expectation

Definition
Let X be a discrete r.v. and $P(B)>0$. Conditional expectation of X given B is

$$
\mathbb{E}(X \mid B)=\sum_{x \in \operatorname{Im}(X)} x \cdot P(X=x \mid B),
$$

whenever the sum is defined.

Law Of Total Expectation

Theorem
Suppose B_{1}, B_{2}, \ldots is a partition of Ω and $A \in \mathcal{F}$. Then

$$
\mathbb{E}(X)=\sum_{i} \mathbb{E}\left(X \mid B_{i}\right) P\left(B_{i}\right)
$$

whenever the sum is defined. (Terms with $P\left(B_{i}\right)=0$ are counted as 0.)

Law Of Total Expectation

