
7

W. What is an elliptic curve

W.1. The genus. By definition, an elliptic curve over K is a projective planar
irreducible curve C over K that contains at least one K-rational point and is of
genus 1. What is the genus? Unfortunately, that is not so easy to explain. A
complete formal definition goes beyond the scope of this text. Neverthelees, the
ensuing comments might give an idea what the genus means.

If C is an irreducible curve over K, then the genus of C may be derived from
the structure of K(C). It somehow reflects properties of principal divisors. (If
σ is a nonzero element of K(C), then there are only finitely many places P with
vP (σ) 6= 0. The formal sum

∑
vP (σ)P is called the principal divisor of σ.) Genus

is always a nonnegative number and is usually denoted by g.
Since complex numbers may be identified with the euclidean plane, a planar

curve over K = C may be regarded as a 2-dimensional object. Let us first ponder
what kind of a 2-dimensional object the projective line P1(C) should be associated
with. The affine line A1(C) coincides with the euclidean plane. The existence
of the point at infinity changes, however, the picture completely. The proper 2-
dimensional object to identify P1(C) with is the sphere. This may be envisioned by
considering a stereographic projection of a sphere to the euclidean plane, with the
point at infinity being represented by the north pole of the sphere.

The sphere is an example of a closed 2-dimensional surface in the 3-dimensional
real space. In this context the exact shape of the surface is not important. What
is important are topological properties of the surface. It turns out that two such
surfaces may be identified by continuous deformations if and only if they possess the
same number of holes. A sphere has no hole. A toroid has one hole. The surface
of a pretzel has two holes (going from doughnut to pretzel adds one hole). The
number of holes is thus a topological invariant and this invariant is called the genus
of the surface. This is how the notion of the genus of a curve arose. If C is a smooth
irreducible projective planar curve over C, then C forms a 2-dimensional structure
that may be embedded into the 3-dimensional real space as a closed surface. The
curve is of genus one if the surface to which it may be embedded has the shape of
torus.

The existence of such an embedding has to be proved. That is done in topology
and goes far beyond the scope of this text. Note however that such an embedding
cannot be “seen” since the graph of the curve is a subset of C × C, and thus it
lives in a 4-dimensional real space. However, the fact that the surface of a complex
elliptic curve forms a torus has certain consequences for elliptic curves over real
numbers. When cutting a torus there appears either one ellipse or two of them.
Because of that it may be expected that an elliptic curve over reals will have one
or two closed branches.

Many authors define an elliptic curve as a projective irreducible curve of genus 1
that is smooth everywhere. This is a traditional approach that may be justified by
the prominent role of smooth Weierstraß curves. These curves present a universal
model of elliptic curves in the sense that whenever C is a curve of genus one that
contains at least one K-rational point, then there exists a smooth Weierstraß curve
E such that the function fields K(C) and K(E) are K-isomorphic (that is there
exists an isomorphism that fixes each λ ∈ K.)

W.2. Weierstraß curves. An affine Weierstraß curve is the set C of all points
(α1, α2) ∈ A2 that fulfil a Weierstrass equation x22 + x2g(x1) = f(x1), that is an
equation in which f, g ∈ K[x1] are polynomials such that deg(g) ≤ 1, deg(f) = 3,
f is monic. It may be proved that the polynomial x22 + x2g(x1) − f(x1) is always
irreducible. Each Weierstraß curve is thus an irreducible planar curve.
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By convention, the coefficients of g are denoted by a1 and a3, and the coefficients
of f by a2, a4 and a6. The Weierstraß equation thus often appears in the standard
form

x22 + a1x1x2 + a3x2 = x31 + a2x
2
1 + a4x1 + a6.

Set b2 = 4a2 + a21, b4 = 2a4 + a1a3, b6 = 4a6 + a23 and

b8 = 4a2a6 + a2a
2
3 + a21a6 − a24 − a1a3a4.

It may be established that the curve C is smooth if and only if the discriminant

∆(C) = −8b34 + 9b2b4b6 − 27b26 − b22b8
is different from 0.

Applications of Weierstraß curves usually assume that char(K) /∈ {2, 3} and
a1 = a3 = 0. Often it is also assumed that a2 = 0. In those cases the smoothness
of C correlates with the nonexistence of a multiple root of f . This will be now
verified.

Suppose that char(K) 6= 2 and that C = Vw, where w(x1, x2) = x22 − f(x1).
Then

∂w

∂x1
= −f ′(x1) and

∂w

∂x2
= 2x2.

A point (α1, 0) ∈ A2 belongs to C if and only if f(α1) = 0. All of this means that
(α1, α2) presents a singularity of C if and only if α2 = 0 and α1 is a root of both f
and f ′. We have proved:

Theorem W.1. Let C be the Weierstraß curve over K, char(K) 6= 2, determined
by x22 = f(x1), f ∈ K[x1] cubic and monic. Then C is smooth if and only if f is
separable (i.e., possesses no multiple root).

If a1 = a2 = a3 = 0, then the Weierstraß equation will often be written as
x22 = x31 + ax1 + b or y2 = x3 + ax + b. The polynomial x3 + ax + b has multiple
roots if and only 4a3 + 27b2 = 0. The curve determined by x22 = x31 + ax1 + b,
char(K) 6= 2, is thus smooth if and only if 4a3 + 27b2 6= 0.

This is the same condition as 4a34 + 27a26 6= 0. A mnemotechnical remark: Both

terms of the sum may be expressed as (i/2)i/2a
j/2
i , where {i, j} = {4, 6}.

Projective Weierstraß curves are obtained by homogenization. They are thus
determined by equation

X2
2X3 +X2G(X1, X3) = F (X1, X3), where G(X1, X3) = a1X1X3 + a3X

2
3

and F (X1, X3) = X3
1 + a2X

2
1X3 + a4X1X

2
3 + a6X

3
3 .

A point at infinity (α1 : α2 : 0) belongs to the curve if and only if 0 = α3
1. There is

thus only one such point, and this point is equal to (0 : 1 : 0).
Put W (X1, X2, X3) = X2

2X3 +X2G(X1, X3)− F (X1, X3). Then

∂W

∂X1
= X2

∂G

∂X1
− ∂F

∂X1
,

∂W

∂X2
= 2X2X3 +G(X1, X3), and

∂W

∂X3
= X2

2 +X2(a1X1 + 2a3X3)− ∂F

∂X3
.

Hence (∂W/∂X1)(0, 1, 0) = 0 = (∂W/∂X2)(0, 1, 0) and (∂W/∂X3)(0, 1, 0) = 1.
Each projective Weierstraß curve is therefore smooth at the point at infinity. An
affine Weierstraß curve is thus smooth if and only if the corresponding projective
Weierstraß curve is smooth.

As examples of affine Weierstraß curves consider curves over real numbers given
by equations x22 = x31 − c3 and x22 = x31 − c2x1. The former curve has a single
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branch. In the central part it has a form of belly that is protruded to the point
(c, 0), with the body being to the right. If c = 0, then (0, 0) is a singularity that
is called cusp. Assume c 6= 0. Then in each case there are two inflexion points. If
c < 0, then the curve passes through stationary inflexion points (0,±c3/2). If c > 0,
then the inflexion points are at (22/3c,±31/2c3/2) ≈ (1.6c, 1.7c3/2) and the slope of
the inflexion line is equal to 21/3(3c)1/2 ≈ 2.2c3/2.

If x22 = x31 − c2x1, then it may be assumed that c > 0 since x3 − c2x = x(x −
c)(x + c). In this case the curve has two affine branches. One has a form of an
oval with the flat pole at (−c, 0), with the other pole at (0, 0) and with extreme
points at (−3−1/2c,±21/2 · 3−3/4c3/2) ≈ (−0.58c, 0.62c3/2). The central part has
again a belly-like form with the body right of (c, 0). The inflexion points are at
≈ (1.5c, 1.3c3/2) and the slope of inflexion line is ≈ 2.1c1/2.

The shape of the unbounded branch in the above two examples does not seem
to resemble a cut of a torus. However, the resemblence is topological, up to defor-
mation. From the projective point of view the branch passes through the point at
infinity, and that makes it closed.

To finish the classification of shapes of real Weierstrass curves consider the curve
given by x22 = x1(x1− 1)2 = x31− 2x21 + x1. The curve passes through points (4, 6),

(1, 0), (1/3,−4/
√

27) ≈ (0.33,−0.77), (0, 0), (1/3, 4/
√

27), (1, 0), (4,−6), forming
thus a crossing point at (1, 0). This type of singularity is called a node.

W.3. The group of an elliptic curve. The K-rational points of a projective
smooth Weierstraß curve may be equipped with a group structure. This is well
known and will be considered in detail later. The aim here is to give a certain idea
what is the abstract background of such groups. It turns out that they may be
defined only in terms of the function field K(C), where C is an elliptic curve (thus
each elliptic curve induces a group structure, not only smooth Weierstraß curves).

In this context the following metaphor may be of help. The genus of a surface
measures, in some sense, what is missing. If A ≤ B are abelian groups, then what
is missing to A may be expressed by factorization B/A.

Situations when B and A are infinite, but the factor may be finite and nontrivial,
tend to be mathematically interesting. In our case B is a subgroup of free abelian
group with the basis being equal to the set of all places of K(C). Elements of
that group are formal sums

∑
aPP , where P runs through all places and aP ∈ Z

is nonzero for only finitely many P . Elements with
∑
aP deg(P ) = 0 form the

subgroup B, while the group A coincides with the set of all principal divisors. If
Q is a fixed place of degree one, then it may be proved that each element of B/A
(i.e., each coset modulo A) contains a unique element of B that is equal to P −Q,
where P is a place of degree one.

If the curve C is smooth at each K-rational point, then each such P may be
associated with a single K-rational point. Denote P by Pα if P is associated with
a K-rational point α. Thus Q = Pω for a K-rational point ω.

Facts above imply that adding the coset of Pα − Pω with the coset of Pβ − Pω
yields a coset with some Pγ − Pω. Setting γ = α⊕ β equips the K-rational points
of C with the structure of an abelian group, and ω is the neutral element of this
group.

Formulae for computing ⊕ depend upon the definition of C. It occurs quite often
that a choice has to be made between several formulae. The choice depends upon
values of α and β, and upon their relationshiop. A situations when there exists a
universal formula (called also a closed formula) which works for all α and β is of
certain computational advantage.
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W.4. Applications of elliptic curves. Some applications are standard and some
are emerging. The Elliptic curve cryptography (ECC) usually refers to the bunch of
applications that replace counting modulo a prime by computations in a subgroup
of the group of an elliptic curve. If C is an elliptic curve over K, then C(K) refers to
the group operation ⊕ that is defined upon the K-rational points of C. The neutral
element ω of the group is usually understood from the context. In applications K is
a finite field. Thus K = Fq, where q is a power of a prime. In present applications
q is nearly always a large prime. Structure of Fq implies that for large q the group
C(Fq) always contains a large cyclic subgroup. The order of this subgroup appears
to be a random feature (while it has to occur in a certain interval). There are
thus many situations when C(Fq) contains a large cyclic subgroup G that is of
prime order. A generator of this subgroup, often denoted by P , usually constitutes,
together with parameters of the curve C, the public key (or a part of it).

Note that making public the pair (P,C) does not imply knowledge of |G| or
|C(K)|. Classical protocols (Diffie-Hellman, Elgamal etc.) derive their security
from the difficulty of the Discrete Logarithm Problem (DLP). Some of the attacks
on the DLP require knowledge of the order of the group. The order of C(K)
is given by the number of K-rational points. There does not seem to exist any
straightforward way how to determine this number from the parameters of the
curve. In the context of ECC the point counting algorithms are thus of paramount
importance.

The advantage of ECC over modular arithmetic rests in the fact that the DLP is
more difficult, which allows for shorter keys. However, quantum computing makes
all protocols based upon the DLP vulnerable. One of the promising alternatives
for elliptic postquantum cryptography is based on isogenies of supersingular elliptic
curves. That is presently beyond the scope of this text.

Classical applications of ECC need keys of considerable size (while much shorter
than those needed for RSA). The speed of computation is hence a factor to be
considered. The question is not only how to compute α ⊕ β, but also how to
organize a computation of [n]α = α ⊕ · · · ⊕ α. In general, techniques used do not
differ from those for other cyclic groups. In some cases (like Elliptic Curves Digital
Signature Algorithm, the ECDSA) only the x-coordinate α of the point (α, β) is
used. There are some speed-ups that take advantage of this fact.

Elliptic curves are also used for pseudorandom generators and in factorizing
integers. Integers that are accessible by Lenstra elliptic-curve factorization are
smaller than those accessible by the Number Field Sieve (NFS). However, the NFS
uses many auxiliary factorizations of small integers, and for that the elliptic-curve
factorization appears to be the most efficient.


