- **3.** Consider a Markov random field on a lattice L with respect to the relation $i \sim j$. If $i \in L$ has no neighbours, i.e. $\partial i = \emptyset$, does that imply that Z_i and Z_{-i} are independent?
- **4.** Consider a Markov random field on a lattice L with respect to the relation $i \sim j$. If $i, j \in L$ are not neighbours, i.e. $i \sim j$, does that imply that Z_i and Z_j are independent?

3) Z_{i} , $Z_{-i} = (Z_{1, \dots}, Z_{i-1}, Z_{i+1, \dots}, Z_{m})$ $S_{i} = \emptyset$ $\Rightarrow Z_{i}, Z_{-i} \text{ indep.}$ $CSSume: MRF \dots p(D_{i}|R_{-i}) = p(R_{i}|R_{-i}) = p(R_{i})$ $p(R_{i}) = p(R_{i})$ $p(R_{i})$

4) NO, dependies propagate in the graph

Los Ising model

Los Markov chains

Los Markov chains

Los Markov chains

Los Markov chains

NR4217 A(R4) Z independent