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What we have learned
I definition of a probability space (Ω,F , P ): two axioms
I naive probability space: Ω finite, F = P(Ω),

P (A) := |A|/|Ω|
I discrete probability space: Ω = {ω1, ω2, . . . } , F = P(Ω),∑

i
pi = 1

P (A) :=
∑

i:ωi∈A
pi

I geometric probability space:
Ω ⊆ Rd with a finite volume,
P (A) := Vd(A)/Vd(Ω)

I probability space continuous with density:
Ω ⊆ Rd with a function f , where

∫
Ω f = 1,

P (A) :=
∫
A f

























What we have learned: Basic properties
In a probability space (Ω,F , P ) we have for A,B ∈ F
I P (Ac) = 1− P (A) (Ac = Ω \A)
I A ⊆ B ⇒ P (A) ≤ P (B)

I P (A ∪B) = P (A) + P (B)− P (A ∩B)

I P (A1 ∪A2 ∪ . . . ) ≤
∑

i P (Ai) (subaditivity, Boole inequality)

I We define conditional probability (when P (B) > 0).

P (A | B) =
P (A ∩B)

P (B)
.

I Q(A) = P (A | B) satisfies the axioms of probability
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Chain rule
I P (A ∩B) = P (B)P (A | B)

Theorem
If A1, . . . , An ∈ F and P (A1 ∩ · · · ∩An) > 0, then

P (A1 ∩A2 ∩ · · · ∩An) =

P (A1)P (A2 | A1)P (A3 | A1 ∩A2) . . . P (An |
n−1⋂
i=1

Ai)

I Ex.: we pick 3 cards from a deck of 52. What is
P(no heart)?













Law of total probability

Definition
Countable family of sets B1, B2, . . . ∈ F is a partition of Ω, if
I Bi ∩Bj = ∅ for i 6= j and
I
⋃

iBi = Ω.

Theorem
If B1, B2, . . . is a partition of Ω and A ∈ F , then

P (A) =
∑
i

P (A | Bi)P (Bi)

(terms with P (Bi) = 0 are counted as 0).



















Law of total probability – exhausting all possibilities
I Application 1. We have three coins: H+T, H+H, T+T, we

choose from them at random. What is the probability that
we toss a tail?









Law of total probability – “wishful thinking”
I Application 2. Gambler’s ruin.

We have a CZK (crowns), our opponent b CZK. We play
repeatedly a fair game for 1 CZK, until someone loses all
his/her money. What is the probability that we win?

































Bayes’ rule

Theorem
Let B1, B2, . . . be a partition of Ω, A ∈ F and P (A), P (Bj) > 0.
Then

P (Bj | A) =
P (A | Bj)P (Bj)

P (A)
=

P (A | Bj)P (Bj)∑
i P (A | Bi)P (Bi)

(terms with P (Bi) = 0 are counted as 0).











Bayes’ rule

























Independent events

Definition
Events A,B ∈ F are independent if P (A ∩B) = P (A)P (B).

I Then we also have P (A | B) = P (A), provided P (B) > 0.

Ex.: we toss a coin twice.
I A = {ω ∈ Ω : ω1 = H} = “first toss was a head”
I B = {ω ∈ Ω : ω2 = H} = “second toss was a head”
I C = {ω ∈ Ω : ω1 6= ω2} = “exactly one toss was a head”











Mutually independent events

Definition
Events {Ai : i ∈ I} are (mutually) independent if for every finite
set J ⊆ I

P (
⋂
i∈J

Ai) =
∏
i∈J

P (Ai).

If the condition is true only for sets J with |J | = 2, we call the
collection {Ai} pairwise independent.





Continuity of probability

Theorem
Suppose that events in F satisfy

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

and A = ∪∞i=1Ai. Then we have

P (A) = lim
i→∞

P (Ai).

I An ⊂ {H,T}N, An = in the first n tosses there was at least
one tail.
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Random variable
Often we are interested in a number given as a result of a
random experiment.
I We throw a dart and measure the distance from the center

of the dartboard.
I We roll a die untill we get a six, then count how many rolls

it took.
I In a quicksort algorithm (with a random choice of pivot) we

measure the number of operations.

Definition
Given a probability space (Ω,F , P ). We call a function
X : Ω→ R a discrete random variable, if Im(X) (range of X) is
a countable set and if for every real x we have

{ω ∈ Ω : X(ω) = x} ∈ F .



PMF

Definition
Probability mass function, pmf of a discrete random variable X
is a function pX : R→ [0, 1] such that

pX(x) = P (X = x) = P ({ω ∈ Ω : X(ω) = x})

I
∑

x∈Im(X) pX(x) = ?

I S := Im(X) Q(A) :=
∑

x∈A pX(x)
(S,P(S), Q) is a discrete probability space.

I For S = {si : i ∈ I} countable set of reals and ci ∈ [0, 1]
satisfying

∑
i∈I ci = 1 there is a probability space and a

discrete r.v. X on it such that pX(si) = ci for i ∈ I.
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Bernoulli/alternate distribution
I X = number of tails in one toss of a coin (not necessary a

fair one)
I We write X ∼ Bern(p). (Sometimes Alt(p).)

I Given p ∈ [0, 1].
I pX(1) = p

I pX(0) = 1− p

I pX(k) = 0 for k 6= 0, 1

I For an event A ∈ F we define indicator random variable IA:
I IA(ω) = 1 if ω ∈ A, IA(ω) = 0 otherwise.
I IA ∼ Bern(P (A))



Binomial distribution
I X = number of tails in n independent tosses of a loaded

coin.
I We write X ∼ Bin(n, p).

I X =
∑n

i=1 Xi for independent r.v.’s X1, . . . , Xn ∼ Bern(p).
I Given p ∈ [0, 1].
I pX(k) =

(
n
k

)
pk(1− p)n−k for k ∈ {0, 1, . . . , n}



Binomial distribution: pmf

Generated by the following code in R

x40 <− 0:40
plot ( x40 , dbinom ( x40 , 40 , 0 . 1 ) )
plot ( x40 , dbinom ( x40 , 40 , 0 . 5 ) )
plot ( x40 , dbinom ( x40 , 40 , 0 . 9 ) )
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