NMAI059 Probability and statistics 1 Class 2

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

what happens events we are about OPC What we have learned • definition of a probability space (Ω, \mathcal{F}, P) : two axioms (2) - MA.)+R **naive** probability space: Ω finite, $\mathcal{F} = \mathcal{P}(\Omega)$, $P(A) := |A|/|\Omega| \xrightarrow{\text{# good}} \overline{\mathcal{P}(\mathcal{A})} \xrightarrow{\mathcal{O} \circ \mathcal{O}} \overline{\mathcal{P}(\mathcal{A})} \xrightarrow{(\mathcal{A})} \mathcal{I}(\mathcal{A}) \xrightarrow{\mathcal{O}} \mathcal{I}(\mathcal{A}) \xrightarrow{\mathcal{O}} \mathcal{I}(\mathcal{A})} = \mathcal{I} \xrightarrow{\mathcal{O} \circ \mathcal{O}} \overline{\mathcal{I}(\mathcal{A})} \xrightarrow{\mathcal{O} \circ \mathcal{O}} \overrightarrow{\mathcal{I}(\mathcal{A})} \xrightarrow{\mathcal{O} \circ \mathcal{O}} \overrightarrow{\mathcal{I}(\mathcal{O})} \xrightarrow{\mathcal{O} \circ \mathcal{O}} \overrightarrow{\mathcal{I}(\mathcal{O})} \xrightarrow{\mathcal{O} \circ \mathcal{O}} \overrightarrow{\mathcal{O}} \overrightarrow{\mathcal{O}$ **discrete** probability space: $\Omega = \{\omega_1, \omega_2, \dots\}$, $\mathcal{F} = \mathcal{P}(\Omega)$, \mathcal{A} $\sum p_i = 1$ 9.3 $\dot{P}(A) := \sum p_i$ $i:\overline{\omega_i}\in A$ geometric probability space: $\Omega \subseteq \mathbb{R}^d$ with a finite volume, $P(A) := V_d(A)/V_d(\Omega)$ 1:R-R probability space continuous with density: $\Omega \subseteq \mathbb{R}^d$ with a function f, where $\int_{\Omega} f = 1$, $P(A) := \int_{A} f$ Tow x P(A) = 1+

ヘロト 人間 とくほ とくほ とう

What we have learned: Basic properties

In a probability space (Ω, \mathcal{F}, P) we have for $A, B \in \mathcal{F}$

$$P(A^c) = 1 - P(A) \qquad (A^c = \Omega \setminus A) A \subseteq B \Rightarrow P(A) \le P(B) \qquad P(B \setminus A) = P(B) - P(A)$$

$$\blacktriangleright P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 \longrightarrow $P(A_1 \cup A_2 \cup ...) \leq \sum_i P(A_i)$ (subaditivity, Boole inequality)

We define conditional probability (when P(B) > 0). Prosecutes's follect $P(\text{endence} \mid \text{innocent})$ very but $P(A \mid B) = \frac{P(A \cap B)}{P(B)} \neq \frac{P(B|A)}{P(B)}$ $P(B) \neq P(B|A)$ $P(B \mid A) = \frac{P(B \cap B)}{P(B)} \neq P(B|A)$ $Q(A) = P(A | B) \text{ satisfies the axioms of probability} \xrightarrow{P \sim 6}.$ $\{ O_{A} | B \} = \frac{P(O \cap A)}{P(B)} = O_{A} | B \rangle = \frac{P(B)}{P(B)} = O_{A} | C \rangle = \frac{P(B)}{P(B)} = O_{A} | C \rangle = \frac{P(A \cap A)}{P(B)} = O_{A} | C \rangle = O_{A} | C$ - (2(L)+Q(L)+

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

def. Chain rule $\blacktriangleright (P(A \cap B) = P(B)P(A \mid B) = P(A) \cdot P(B(A))$ Theorem 1 theorem If $A_1, \ldots, A_n \in \mathcal{F}$ and $P(A_1 \cap \cdots \cap A_n) > 0$, then for the prece $P(A_1 \cap A_2 \cap \dots \cap A_n) =$ n-1 $P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2)\dots P(A_n \mid A_n)$ A_i) P(A, nA) P(A, akanA3) - TP(A, n-- A) Prog Plan - a Am 4.13 52 Ex.: we pick 3 cards from a deck of 52. What is P(no heart)? $P(A, nA_2, nA_3) = P(A_1) P(A_2|A_1) P(A_3|A_1 nA_2) = \frac{39}{52} \cdot \frac{38}{57}$ 37 50

(日)

Law of total probability

Definition

Countable family of sets $B_1, B_2, \ldots \in \mathcal{F}$ is a partition of Ω , if

•
$$\underline{B_i \cap B_j} = \emptyset$$
 for $i \neq j$ and

$$\blacktriangleright \bigcup_i B_i = \Omega.$$

Theorem

If B_1, B_2, \ldots is a partition of Ω and $A \in \mathcal{F}$, then

$$P(A) = \sum_{i} P(A \mid B_{i})P(B_{i})$$

= 0 are counted as 0).
undf • 0

(terms with $P(B_i) = 0$ are counted as 0).

$$P(A) = \sum_{n} \frac{P(A_{n}B_{n})}{P(A_{n}B_{n})} = \sum_{n} \frac{P(B_{n})}{P(A_{n}B_{n})} + \frac{P(A_{n}B_{n})}{P(A_{n}B_{n})}$$

Law of total probability – exhausting all possibilities

• Application 1. We have three coins: $(H+\tilde{I})$, $H+\tilde{H}$, $(\tilde{I}+\tilde{J})$, we choose from them at random. What is the probability that we toss a tail? p(T) = P(C). P(T/C) + P(C). P(T/C) + P(C)

ち. え + な. 0 + な. 1

P(7) = -

Law of total probability – "wishful thinking" $P(\infty, p^{2}, g^{2}) = 0$ (Markov charef rouden walk) = 1- P(we win) - 17 Application 2. Gambler's ruin. P(we has) = 4/2 arch $B_{a} = \{ we have a CZK (crowns), our opponent <math>\overline{b} CZK$. We play the peatedly a fair game for 1 CZK, until someone loses all $\frac{1}{2}$ Pr k . k money. What is the probability that we win? R H. H. H. H. H. n=arb مہ \sim their p=0 $p_n=1$ (n-1 egs, Pa= P(we will the game)= ? duss = P(win / win 1. round). P(wan 1st or coul) diede = di In Plana / loop 1st roand). P(loose 1st ronad) didat ... rdy = in Pe= 2 · Pari + 2 Pa-1 Pa-2Pa= Par + Par N+1 la eq's 1 Pa-1 Pa-Par = Peri-Pa In n+1 vor's da dari (p. - p.) - (p. - p. - - - - (p. - p. -) · Pu-B=1-0=1 $P_{a} = \frac{a}{n} = \frac{a}{a+b}$ ▶ < E > E

Bayes' rule

Theorem Let B_1, B_2, \ldots be a partition of Ω , $A \in \mathcal{F}$ and $P(A), P(B_j) > 0$. Then state of the world

 $\underbrace{P(B_j \mid A)}_{\text{Heavy}} \stackrel{()}{=} \frac{P(A \mid B_j)P(B_j)}{P(A)} \stackrel{()}{=} \frac{P(A \mid B_j)P(B_j)}{\sum_i P(A \mid B_i)P(B_i)}$ (terms with $P(B_i) = 0$ are counted as 0). theory al. woo) l observation Proof (1) def. of coul. prob. turnal appl. 3 cours assort, we tass T $P(B, |A) = \frac{P(B, nA)}{P(A)} *$ CA TH CA HAT X $P(c_1|T) = 0$ $\frac{P(A/B_{\cdot})}{P(B_{\cdot})} = \frac{P(B_{\cdot})A_{\cdot}}{P(B_{\cdot})}$ $P(C, |T) = \frac{P(T/C,). P(C,)}{P(T)} = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{2}}$ use LOTP for P(A)

P(T(D) = seaset. P(T°/D') - specif.

◆ロ▶★舂▶★≧▶★≧▶ 差 のなぐ

observ. : T -- we test +

 $P(D|T) = \frac{P(D). P(T|D)}{P(D)P(T|D) + P(D^{c})P(T|D^{c})} = \frac{P \cdot 0.8}{P \cdot 0.8 + (Tp) \cdot 0.07}$

- p-0.001 --- 7%
- P=0.016 ..._ 56 %

Independent events

Q= {TiH} × {TiH}

Definition

Events $A, B \in \mathcal{F}$ are independent if $P(A \cap B) = P(A)P(B)$.

▶ Then we also have $P(A \mid B) = P(A)$, provided P(B) > 0.

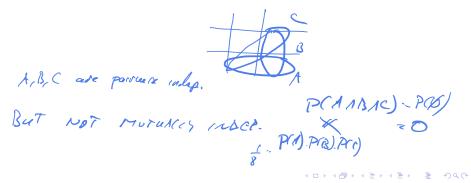
Ex.: we toss a coin twice.

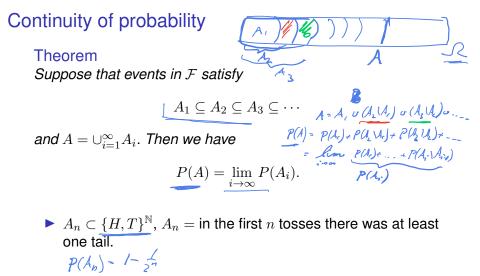
Mutually independent events

Definition Events $\{A_i : i \in I\}$ are (mutually) independent if for every finite set $J \subseteq I$

$$P(\bigcap_{i\in J} A_i) = \prod_{i\in J} P(A_i).$$

If the condition is true only for sets J with |J| = 2, we call the collection $\{A_i\}$ pairwise independent.





 $A = \bigcup_{n=1}^{\infty} A_n = \text{"ot least one } T \text{ in the work on son.}$ $A^{-} \bigcup_{n=1}^{\infty} P(A) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} \frac{1 - \frac{1}{2^{\frac{1}{2}}}}{1 - \frac{1}{2^{\frac{1}{2}}}} = 1$

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Random variable

Often we are interested in a number given as a result of a random experiment.

- We throw a dart and measure the distance from the center of the dartboard.
- We roll a die untill we get a six, then count how many rolls it took.
- In a quicksort algorithm (with a random choice of pivot) we measure the number of operations.

Definition

Given a probability space (Ω, \mathcal{F}, P) . We call a function $X : \Omega \to \mathbb{R}$ a discrete random variable, if Im(X) (range of X) is a countable set and if for every real x we have

$$\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}.$$

PMF

Definition

Probability mass function, pmf of a discrete random variable X is a function $p_X : \mathbb{R} \to [0, 1]$ such that

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

$$\blacktriangleright \sum_{x \in Im(X)} p_X(x) = ?$$

• S := Im(X) $Q(A) := \sum_{x \in A} p_X(x)$ $(S, \mathcal{P}(S), Q)$ is a discrete probability space.

For S = {s_i : i ∈ I} countable set of reals and c_i ∈ [0, 1] satisfying ∑_{i∈I} c_i = 1 there is a probability space and a discrete r.v. X on it such that p_X(s_i) = c_i for i ∈ I.

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Bernoulli/alternate distribution

- X = number of tails in one toss of a coin (not necessary a fair one)
- We write $X \sim Bern(p)$. (Sometimes Alt(p).)
- Given $p \in [0, 1]$.
- $\blacktriangleright p_X(1) = p$

▶
$$p_X(0) = 1 - p$$

- ▶ $p_X(k) = 0$ for $k \neq 0, 1$
- For an event $A \in \mathcal{F}$ we define *indicator random variable* I_A :

(日) (日) (日) (日) (日) (日) (日)

- $I_A(\omega) = 1$ if $\omega \in A$, $I_A(\omega) = 0$ otherwise.
- ► $I_A \sim Bern(P(A))$

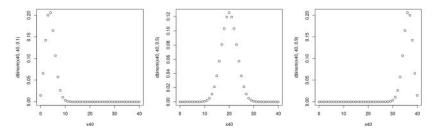
Binomial distribution

- X = number of tails in n independent tosses of a loaded coin.
- We write $X \sim Bin(n, p)$.

X = ∑_{i=1}ⁿ X_i for independent r.v.'s X₁,..., X_n ~ Bern(p).
Given p ∈ [0, 1].

•
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k \in \{0, 1, \dots, n\}$

Binomial distribution: pmf



・ コット (雪) (小田) (コット 日)

Generated by the following code in R

x40 <- 0:40 plot(x40, dbinom(x40, 40, 0.1)) plot(x40, dbinom(x40, 40, 0.5)) plot(x40, dbinom(x40, 40, 0.9))