NMAI059 Probability and statistics 1 Class 2

Robert Šámal

What we have learned

- definition of a probability space (Ω, \mathcal{F}, P) : two axioms
- naive probability space: Ω finite, $\mathcal{F}=\mathcal{P}(\Omega)$, $P(A):=|A| /|\Omega|$
- discrete probability space: $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}, \mathcal{F}=\mathcal{P}(\Omega)$,

$$
\begin{aligned}
& \sum_{i} p_{i}=1 \\
& P(A):=\sum_{i: \omega_{i} \in A} p_{i}
\end{aligned}
$$

- geometric probability space:
$\Omega \subseteq \mathbb{R}^{d}$ with a finite volume, $P(A):=V_{d}(A) / V_{d}(\Omega)$
- probability space continuous with density:
$\Omega \subseteq \mathbb{R}^{d}$ with a function f, where $\int_{\Omega} f=1$, $P(A):=\int_{A} f$

What we have learned: Basic properties

In a probability space (Ω, \mathcal{F}, P) we have for $A, B \in \mathcal{F}$

- $P\left(A^{c}\right)=1-P(A) \quad\left(A^{c}=\Omega \backslash A\right)$
- $A \subseteq B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P\left(A_{1} \cup A_{2} \cup \ldots\right) \leq \sum_{i} P\left(A_{i}\right)$ (subaditivity, Boole inequality)
- We define conditional probability (when $P(B)>0$).

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- $Q(A)=P(A \mid B)$ satisfies the axioms of probability

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

Chain rule

- $P(A \cap B)=P(B) P(A \mid B)$

Theorem
If $A_{1}, \ldots, A_{n} \in \mathcal{F}$ and $P\left(A_{1} \cap \cdots \cap A_{n}\right)>0$, then

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)= \\
& \quad P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots P\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right)
\end{aligned}
$$

- Ex.: we pick 3 cards from a deck of 52 . What is P (no heart)?

Law of total probability

Definition
Countable family of sets $B_{1}, B_{2}, \ldots \in \mathcal{F}$ is a partition of Ω, if

- $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$ and
- $\bigcup_{i} B_{i}=\Omega$.

Theorem
If B_{1}, B_{2}, \ldots is a partition of Ω and $A \in \mathcal{F}$, then

$$
P(A)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

(terms with $P\left(B_{i}\right)=0$ are counted as 0).

Law of total probability - exhausting all possibilities

- Application 1. We have three coins: $\mathrm{H}+\mathrm{T}, \mathrm{H}+\mathrm{H}, \mathrm{T}+\mathrm{T}$, we choose from them at random. What is the probability that we toss a tail?

Law of total probability - "wishful thinking"

- Application 2. Gambler's ruin.

We have a CZK (crowns), our opponent b CZK. We play repeatedly a fair game for 1 CZK, until someone loses all his/her money. What is the probability that we win?

Bayes' rule

Theorem
Let B_{1}, B_{2}, \ldots be a partition of $\Omega, A \in \mathcal{F}$ and $P(A), P\left(B_{j}\right)>0$. Then

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{P(A)}=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

(terms with $P\left(B_{i}\right)=0$ are counted as 0).

Bayes' rule

[^0]
Independent events

Definition
Events $A, B \in \mathcal{F}$ are independent if $P(A \cap B)=P(A) P(B)$.

- Then we also have $P(A \mid B)=P(A)$, provided $P(B)>0$.

Ex.: we toss a coin twice.

- $A=\left\{\omega \in \Omega: \omega_{1}=H\right\}=$ "first toss was a head"
- $B=\left\{\omega \in \Omega: \omega_{2}=H\right\}=$ "second toss was a head"
- $C=\left\{\omega \in \Omega: \omega_{1} \neq \omega_{2}\right\}=$ "exactly one toss was a head"

Mutually independent events

Definition
Events $\left\{A_{i}: i \in I\right\}$ are (mutually) independent if for every finite set $J \subseteq I$

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right) .
$$

If the condition is true only for sets J with $|J|=2$, we call the collection $\left\{A_{i}\right\}$ pairwise independent.

Continuity of probability

Theorem
Suppose that events in \mathcal{F} satisfy

$$
A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots
$$

and $A=\cup_{i=1}^{\infty} A_{i}$. Then we have

$$
P(A)=\lim _{i \rightarrow \infty} P\left(A_{i}\right)
$$

- $A_{n} \subset\{H, T\}^{\mathbb{N}}, A_{n}=$ in the first n tosses there was at least one tail.

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

Random variable

Often we are interested in a number given as a result of a random experiment.

- We throw a dart and measure the distance from the center of the dartboard.
- We roll a die untill we get a six, then count how many rolls it took.
- In a quicksort algorithm (with a random choice of pivot) we measure the number of operations.

Definition

Given a probability space (Ω, \mathcal{F}, P). We call a function $X: \Omega \rightarrow \mathbb{R}$ a discrete random variable, if $\operatorname{Im}(X)$ (range of X) is a countable set and if for every real x we have

$$
\{\omega \in \Omega: X(\omega)=x\} \in \mathcal{F} .
$$

PMF

Definition
Probability mass function, pmf of a discrete random variable X is a function $p_{X}: \mathbb{R} \rightarrow[0,1]$ such that

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega: X(\omega)=x\})
$$

- $\sum_{x \in \operatorname{Im}(X)} p_{X}(x)=?$
- $S:=\operatorname{Im}(X) \quad Q(A):=\sum_{x \in A} p_{X}(x)$ $(S, \mathcal{P}(S), Q)$ is a discrete probability space.
- For $S=\left\{s_{i}: i \in I\right\}$ countable set of reals and $c_{i} \in[0,1]$ satisfying $\sum_{i \in I} c_{i}=1$ there is a probability space and a discrete r.v. X on it such that $p_{X}\left(s_{i}\right)=c_{i}$ for $i \in I$.

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.s

Bernoulli/alternate distribution

- $X=$ number of tails in one toss of a coin (not necessary a fair one)
- We write $X \sim \operatorname{Bern}(p)$. (Sometimes $\operatorname{Alt}(p)$.)
- Given $p \in[0,1]$.
- $p_{X}(1)=p$
- $p_{X}(0)=1-p$
- $p_{X}(k)=0$ for $k \neq 0,1$
- For an event $A \in \mathcal{F}$ we define indicator random variable I_{A} :
- $I_{A}(\omega)=1$ if $\omega \in A, I_{A}(\omega)=0$ otherwise.
- $I_{A} \sim \operatorname{Bern}(P(A))$

Binomial distribution

- $X=$ number of tails in n independent tosses of a loaded coin.
- We write $X \sim \operatorname{Bin}(n, p)$.
- $X=\sum_{i=1}^{n} X_{i}$ for independent r.v.'s $X_{1}, \ldots, X_{n} \sim \operatorname{Bern}(p)$.
- Given $p \in[0,1]$.
- $p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k \in\{0,1, \ldots, n\}$

Binomial distribution: pmf

Generated by the following code in \mathbf{R}
$x 40<-0: 40$
plot (x40, dbinom(x40, 40, 0.1))
plot(x40, dbinom(x40, 40, 0.5))
plot(x40, dbinom(x40, 40, 0.9))

[^0]:

