NMAI059 Probability and statistics 1 Class 2

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What we have learned

- definition of a probability space (Ω, \mathcal{F}, P) : two axioms
- **naive** probability space: Ω finite, $\mathcal{F} = \mathcal{P}(\Omega)$, $P(A) := |A|/|\Omega|$
- **discrete** probability space: $\Omega = \{\omega_1, \omega_2, ...\}$, $\mathcal{F} = \mathcal{P}(\Omega)$, $\sum_{i} p_i = 1$ $P(A) := \sum_{i:\omega_i \in A} p_i$

- **geometric** probability space: $\Omega \subseteq \mathbb{R}^d$ with a finite volume, $P(A) := V_d(A)/V_d(\Omega)$
- probability space **continuous with density**: $\Omega \subseteq \mathbb{R}^d$ with a function f, where $\int_{\Omega} f = 1$, $P(A) := \int_A f$

What we have learned: Basic properties

In a probability space (Ω, \mathcal{F}, P) we have for $A, B \in \mathcal{F}$

$$\blacktriangleright P(A^c) = 1 - P(A) \qquad (A^c = \Omega \setminus A)$$

$$\blacktriangleright A \subseteq B \Rightarrow P(A) \le P(B)$$

$$\blacktriangleright P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- ► $P(A_1 \cup A_2 \cup ...) \le \sum_i P(A_i)$ (subaditivity, Boole inequality)
- We define conditional probability (when P(B) > 0).

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

• $Q(A) = P(A \mid B)$ satisfies the axioms of probability

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Chain rule

$$P(A \cap B) = P(B)P(A \mid B)$$
Theorem
If $A_1, \dots, A_n \in \mathcal{F}$ and $P(A_1 \cap \dots \cap A_n) > 0$, then
$$P(A_1 \cap A_2 \cap \dots \cap A_n) =$$

$$P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \dots P(A_n \mid \bigcap_{i=1}^{n-1} A_i)$$

Ex.: we pick 3 cards from a deck of 52. What is P(no heart)?

Law of total probability

Definition

Countable family of sets $B_1, B_2, \ldots \in \mathcal{F}$ is a partition of Ω , if

•
$$B_i \cap B_j = \emptyset$$
 for $i \neq j$ and
• $\bigcup_i B_i = \Omega$.

Theorem

If B_1, B_2, \ldots is a partition of Ω and $A \in \mathcal{F}$, then

$$P(A) = \sum_{i} P(A \mid B_i) P(B_i)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(terms with $P(B_i) = 0$ are counted as 0).

Law of total probability – exhausting all possibilities

Application 1. We have three coins: H+T, H+H, T+T, we choose from them at random. What is the probability that we toss a tail?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Law of total probability – "wishful thinking"

Application 2. Gambler's ruin. We have a CZK (crowns), our opponent b CZK. We play repeatedly a fair game for 1 CZK, until someone loses all his/her money. What is the probability that we win?

(ロ) (同) (三) (三) (三) (○) (○)

Bayes' rule

Theorem

Let B_1, B_2, \ldots be a partition of Ω , $A \in \mathcal{F}$ and $P(A), P(B_j) > 0$. Then

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{P(A)} = \frac{P(A \mid B_j)P(B_j)}{\sum_i P(A \mid B_i)P(B_i)}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(terms with $P(B_i) = 0$ are counted as 0).

Bayes' rule

Independent events

Definition

Events $A, B \in \mathcal{F}$ are independent if $P(A \cap B) = P(A)P(B)$.

▶ Then we also have P(A | B) = P(A), provided P(B) > 0.

Ex.: we toss a coin twice.

•
$$A = \{\omega \in \Omega : \omega_1 = H\} =$$
 "first toss was a head"

►
$$B = \{\omega \in \Omega : \omega_2 = H\} =$$
 "second toss was a head"

▶ $C = \{\omega \in \Omega : \omega_1 \neq \omega_2\} =$ "exactly one toss was a head"

Mutually independent events

Definition Events $\{A_i : i \in I\}$ are (mutually) independent if for every finite set $J \subseteq I$

$$P(\bigcap_{i\in J} A_i) = \prod_{i\in J} P(A_i).$$

If the condition is true only for sets J with |J| = 2, we call the collection $\{A_i\}$ pairwise independent.

Continuity of probability

Theorem Suppose that events in \mathcal{F} satisfy

 $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$

and $A = \bigcup_{i=1}^{\infty} A_i$. Then we have

$$P(A) = \lim_{i \to \infty} P(A_i).$$

• $A_n \subset \{H, T\}^{\mathbb{N}}$, $A_n =$ in the first *n* tosses there was at least one tail.

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Random variable

Often we are interested in a number given as a result of a random experiment.

- We throw a dart and measure the distance from the center of the dartboard.
- We roll a die untill we get a six, then count how many rolls it took.
- In a quicksort algorithm (with a random choice of pivot) we measure the number of operations.

Definition

Given a probability space (Ω, \mathcal{F}, P) . We call a function $X : \Omega \to \mathbb{R}$ a discrete random variable, if Im(X) (range of X) is a countable set and if for every real x we have

$$\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}.$$

PMF

Definition

Probability mass function, pmf of a discrete random variable X is a function $p_X : \mathbb{R} \to [0, 1]$ such that

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

$$\blacktriangleright \sum_{x \in Im(X)} p_X(x) = ?$$

• S := Im(X) $Q(A) := \sum_{x \in A} p_X(x)$ $(S, \mathcal{P}(S), Q)$ is a discrete probability space.

For S = {s_i : i ∈ I} countable set of reals and c_i ∈ [0, 1] satisfying ∑_{i∈I} c_i = 1 there is a probability space and a discrete r.v. X on it such that p_X(s_i) = c_i for i ∈ I.

Overview

Conditional probability

Discrete random variables

Examples of discrete r.v.'s

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Bernoulli/alternate distribution

- X = number of tails in one toss of a coin (not necessary a fair one)
- We write $X \sim Bern(p)$. (Sometimes Alt(p).)
- Given $p \in [0, 1]$.
- $\blacktriangleright p_X(1) = p$

▶
$$p_X(0) = 1 - p$$

- ▶ $p_X(k) = 0$ for $k \neq 0, 1$
- For an event $A \in \mathcal{F}$ we define *indicator random variable* I_A :

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- $I_A(\omega) = 1$ if $\omega \in A$, $I_A(\omega) = 0$ otherwise.
- ► $I_A \sim Bern(P(A))$

Binomial distribution

- X = number of tails in n independent tosses of a loaded coin.
- We write $X \sim Bin(n, p)$.

X = ∑_{i=1}ⁿ X_i for independent r.v.'s X₁,..., X_n ~ Bern(p).
Given p ∈ [0, 1].

•
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k \in \{0, 1, \dots, n\}$

Binomial distribution: pmf

ヘロト 人間 とくほ とくほ とう

3

Generated by the following code in R

x40 <- 0:40 plot(x40, dbinom(x40, 40, 0.1)) plot(x40, dbinom(x40, 40, 0.5)) plot(x40, dbinom(x40, 40, 0.9))