Introduction to applied

bioinformatics

PETRA MATOUŠKOVÁ 2021/2022

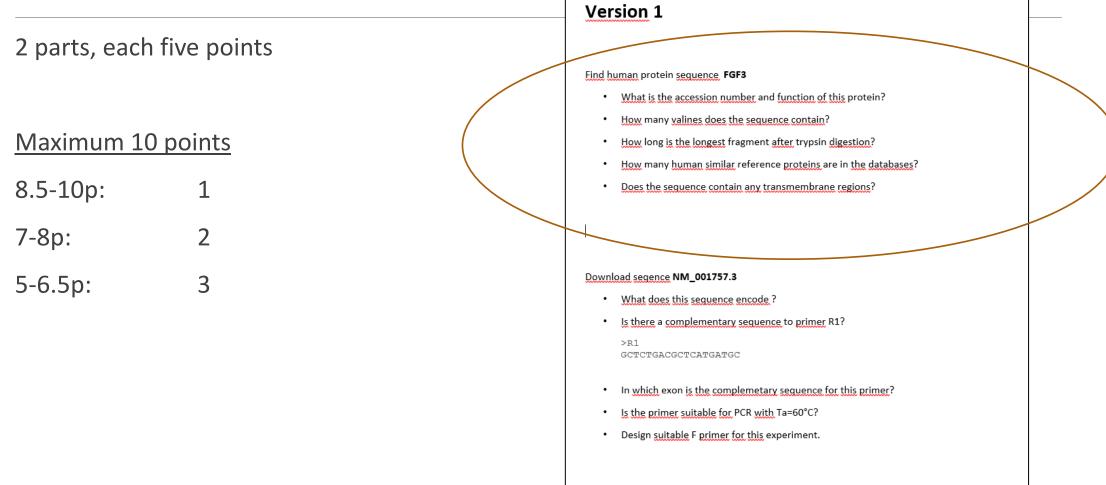
10/10

Exam?

Thursday 14:00 in usual lecture time ...

Moodle: files with versions open "task" for submisson (like for homeworks).

Exam test:


2 parts, each five points	
Maximum 10 points	

8.5-10p:	1
7-8p:	2
5-6.5p:	3

Ver	sion 1
<u>Find h</u>	uman protein sequence, FGF3
•	What is the accession number and function of this protein?
•	How many valines does the sequence contain?
•	How long is the longest fragment after trypsin digestion?
•	How many human similar reference proteins are in the databases?
•	Does the sequence contain any transmembrane regions?
Down	oad segence NM_001757.3
•	What does this sequence encode ?
•	Is there a complementary sequence to primer R1?
	>R1 GCTCTGACGCTCATGATGC
	In which exon is the complemetary sequence for this primer?
	Is the primer suitable for PCR with Ta=60°C?

Previous Exams

Exam test:

What is the accession number and function of this protein?

How many valines does the sequence contain?

How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

What is the accession number and function of this protein?

How many valines does the sequence contain?

How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

What is the accession number and function of this protein?

Uniprot:

		P11487	FGF3_HUMAN	☆	Fibroblast growth factor 3	FGF3 INT2	Homo sapiens (Human)
--	--	--------	------------	---	----------------------------	-----------	----------------------

 \rightarrow role in the regulation of embryonic development, cell proliferation, and cell differentiation....

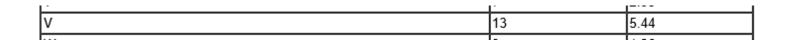
OR

fibroblast growth factor 3 precursor [Homo sapiens]

- NCBI/Protein:
 - 239 aa protein Accession: NP_005238.1 GI: 4885233

What is the accession number and function of this protein?

How many valines does the sequence contain?


How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

How many valines does the sequence contain?

SMS	Sequence Manipulation Suite: Protein Stats
Format Conversion -Combine FASTA -EMBL to FASTA	Protein Stats returns the number of occurrences of each residue in the sequence
-EMBL Feature Extractor	Paste the raw sequence or one or more FASTA sequences into the text area belo
-EMBL Trans Extractor -Filter DNA -Filter Protein -GenBank to FASTA -GenBank Feature Extractor -GenBank Trans Extractor -One to Three -Range Extractor DNA	MGLIWLLLLSLLEPGWPAAGPGARLRRDAGGRGGVYEHLGGAPRRKLYCATKYHLQLHP SGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAMNKRGRLYASEHYSAECEFVER IHELGYNTYASRLYRTVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRRTQKSSLFLP RVLDHRDHEMVRQLQSGLPRPPGKGVQPRRRQKQSPDNLEPSHVQASRLGSQLEASAH
-Range Extractor Protein -Reverse Complement -Split FASTA -Three to One	Submit Clear Reset *This page requires JavaScript. See browser compatibility. *You can mirror this page or use it off-line.

What is the accession number and function of this protein?

How many valines does the sequence contain?

How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

How long is the longest fragment after trypsin digestion?

		Position of cleavage s	ite Name of cleaving enzyme(s)	Resulting peptide sequence (see explanations)	Peptide length [aa]	Peptide mass [Da]
EVPASV		24	Trypsin	MGLIWLLLSLLEPGWPAAGPGAR	24	2532.085
SIB Bioinformatics Resource I	Bortal	26	Trypsin	LR	2	287.362
	Pondi	27	Trypsin	R	1	174.203
		32	Trypsin	DAGGR	5	474.474
		44	Trypsin	GGVYEHLGGAPR	12	1212.330
B (11 B ()		46	Trypsin	RR	2	330.390
PeptideCutter		47	Trypsin	K	1	146.189
		53	Trypsin	LYCATK	6	697.847
PeptideCutter [references /	documentation] predicts potential cleavag	63	Trypsin	YHLQLHPSGR	10	1207.357
		89	Trypsin	VNGSLENSAYSILEITAVEVGIVAIR	26	2718.100
		95	Trypsin	GLFSGR	6	635.721
Enter a UniProtKB (Swiss-Pr	ot or TrEMBL) protein identifier, ID (e.g. A	101	Trypsin	YLAMNK	6	738.900
MGLIWLLLLSLLEPGWPAAGPGARL	REDAGGRGGVYEHLGGAPEREKLYC	102	Trypsin	R	1	174.203
ATKYHLOLHP		104	Trypsin	GR	2	231.255
	UN TROT FROMWIN AND AND AND AND AND AND AND AND AND AN	120	Trypsin	LYASEHYSAECEFVER	16	1933.079
SGRVNGSLENSAYSILEITAVEVGI	VAIRGLESGRILAMNKRGRLIASER	132	Trypsin	IHELGYNTYASR	12	1423.548
YSAECEFVER		135	Trypsin	LYR	3	450.538
IHELGYNTYASRLYRTVSSTPGARR	QPSAERLWYVSVNGKGRPRRGFKTR	144	Trypsin	TVSSTPGAR	9	874.949
RTOKSSLFLP		145	Trypsin	R	1	174.203
RVLDHRDHEMVROLOSGLPRPPGKG	VOPBRBROKOSPDNLEPSHVOASBL	151	Trypsin	QPSAER	6	686.723
GSOLEASAH	· Of KRIRGROOT DATED DAY GROAD	160	Trypsin	LWYVSVNGK	9	1065.237
GOODERDHI		164	Trypsin	GRPR	4	484.559
Г		165	Trypsin	R	1	174.203
	De la la companya de la comp	168	Trypsin	GFK	3	350.418
	Please indicate the way you would like the cleavage si	ti 170	Trypsin	TR	2	275.308
		171	Trypsin	R	1	174.203
		174	Trypsin	TQK	3	375.425
	Map of cleavage sites. Please select the number of ami	n 181	Trypsin	SSLFLPR	7	818.971
Perform the cleavage of th	Table of sites, sorted alphabetically by enzyme and che	186	Trypsin	VLDHR	5	638.724
	Table of siles, softed alphabelically by enzyme and che	192	Trypsin	DHEMVR	6	785.873
	Table of sites, sorted sequentially by amino acid number	204	Trypsin	QLQSGLPRPPGK	12	1277.489
		209	Trypsin	GVQPR	5	555.635
		212	Trypsin	RRR	3	486.578
Please, select		214	Trypsin	0K	2	274.320
	Laboration la	229	Trypsin	QSPDNLEPSHVQASR	15	1664.752

239

end of sequence

LGSQLEASAH

10

1012.087

all available enzymes and chemicals

• only the following selection of enzymes and chemicals

What is the accession number and function of this protein?

How many valines does the sequence contain?

How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

How many human similar reference proteins are in the databases?

S NCBI R	esources 🗹 How To 🕑		Sign in to NCBI
Protein	Protein v Advanced	Search	Help
GenPept -		Send to: 🗸	Change region shown •
	st growth factor 3 precursor [Homo sapiens] ce Sequence: NP_005238.1 ns FASTA_Graphics		Customize view 💌
Go to: 💌	IS FASTA STRUTTES		Analyze this sequence Run BLAST
LOCUS	NF_005238 239 aa linear PRI 09-MAY-2018 fibroblast growth factor 3 precursor [Homo sapiens].		Identify Conserved Domains
ACCESSION	NP_005238		Highlight Sequence Features
VERSION DBSOURCE	NP_005238.1 REFSEQ: accession NM 005247.2		Find in this Sequence
KEYWORDS SOURCE ORGANISM	RefSeg. Homo sapiens (human) Homo sapiens		Show in Genome Data Viewer
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Frimates; Hablorrhini;		Articles about the FGF3 gene
REFERENCE AUTHORS	Catarrhini; Hominidae; Homo. 1 (residues 1 to 239)		Genetically confirmed thanatophoric dysplasia with fibroblast growth factc [Exp Mol Pathol. 2017]
TITLE	Jung M and Park SH. Genetically confirmed thanatophoric dysplasia with fibroblast courts feator recentor 3 mutation		Allelic loss at chromosome 11q13 alters FGF3 gene expression in a human br [Oncol Rep. 2014]

BLAST ">>> blastp sulte

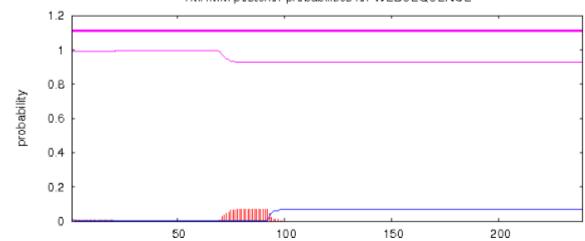
		tblastn	tblastx					
Enter Que	ry Sequ	ence						
	· ·), or FAS	TA sequence(s)	0	Clea	r	Query subrange
SGRVNGSLEN IHELGYNTYA	SAYSILE SRLYRTV	ITAVEVGI SSTPGARF	VAIRGLE	GGVYEHLGGAPRI SGRYLAMNKRGRI WYVSVNGKGRPRI QKQSPDNLEPSHV	LYASEHYSAEC RGFKTRRTQKS	EFVER	< _>	From To
Or, upload fil				Procháze	t 😡			
Job Title								
			-	for your BLAST se	arch 😡			
Align two o	or more s	equences	-	for your BLAST se	arch 😡			
Choose S	or more search Se	equences et	•	for your BLAST set	arch 😡	⊻ 9		
Align two of Choose So Database Organism Optional	earch So • [equences et Reference Homo sapi	proteins (refseq_protein) :9606)			Exclude	
Choose So Database Organism	earch Se * [E	equences et Reference Homo sapi	proteins (iens (taxid	refseq_protein)	or tax id. Only 20	D top taxa will	be shown.	

How many human similar reference proteins are in the databases?

	BLAST [®] » blast	p sulte						
			19 sequences selected (😮	Putative co	onserved domains hav	e been detected, click	on the image below for	detailed resul
Hic	blastn blastp blastx	t <u>blastn</u> t <u>blastx</u>	Querg	Fece	25 50 7	5 100 125 heparin bi	150 175	286
Protein BLAST	Enter Query Sec	quence		ific hits rfamilies		FGF FGF superfamily		
protein ▶ protein NH5	Enter accession nur	nber(s), gi(s), or FASTA sequence(s) 😡				_		
		NPAAGPGARLRRDAGGRGGVYEHLGGAPRRRKLYCA LEITAVEVGIVAIRGLFSGRYLAMNKRGRLYASEHY			Distribution of the	op 19 Blast Hits on 1	l9 subject sequences	
	IHELGYNTYASRLYRI	LEIIAVEVGIVAIKGEPSGKILAMIKKOKLIASENI: IVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRR: SGLPRPPGKGVQPRRRRQKQSPDNLEPSHVQASRLG:			1 40 80	Query I I 0 120 160	200	
	Or, upload file	Procházet 👀						
	Job Title							
		Enter a descriptive title for your BLAST search 🥹						
	Align two or more	e sequences 😡						
	Choose Search	Set						
≶ NCRI Resource © How To © Protein ♥ Advanced	Securit to NGB Help	Reference proteins (refseq_protein)	✓ 0					
GenPhot - Send to - Change region s fibroblast growth factor 3 precursor [Homo sapiens]	shown · lism	Homo sapiens (taxid:9606)	Exclude	+				
NCBI Reference Sequence: NP_06238.1	quence	Enter organism common name, binomial, or tax id. O	nly 20 top taxa will be shown.	0				
12000 MP_000214 239 em 110000 100000 100000 100000 120000 MP_0002200 Second operating provide factors & precursors (Boson Aspinsmi). Mpdpdd Sequence Mpdpdd Sequence 100000 MP_0002201.1 Second operating provide factors & precursors (Boson Aspinsmi). Mpdpdd Sequence 1000000 ME200000 MP_000201.2 Second operating provide factors (Boson Aspinsmi). 1000000 ME2000000 Second operating provide factors (Boson Aspinsmi). Second Aspinsmin (Boson Aspinsmin).	nee Features de	Models (XM/XP) Uncultured/environmenta	I sample sequences					
REFERENCE 1 (residues 1 to 239) with throbiast grow AUTHORS Jung M and Perk SH. Alleic loss at chron	he FGF3 gene at function protocol (see Section 1997) at Query at function protocol (section 1997) at	Enter an Entrez query to limit search 😡	You Tube Create cu	ustom database	2			

What is the accession number and function of this protein?

How many valines does the sequence contain?


How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

Does the sequence contain any transmembrane regions?

 \rightarrow Use any of the transmembrane helices predicting program.

TMHMM posterior probabilities for WEBSEQUENCE

What is the accession number and function of this protein?

How many valines does the sequence contain?

How long is the longest fragment after trypsin digestion?

How many human similar reference proteins are in the databases?

Does the sequence contain any transmembrane regions?

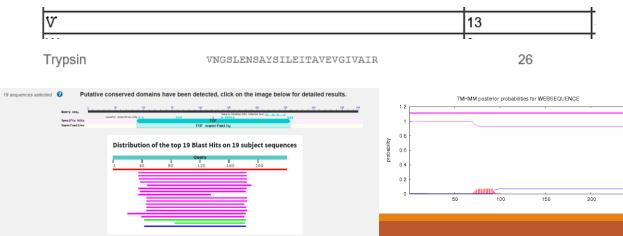
Solution:

FGF3: P11487 (NP_005238.1), Fibroblast growth factor 3-role in the regulation of embryonic development... Contains 13 valins. Longest fragment after trypsin digestion has 26 aminoacids. In the databes of reference sequences, there is 19 similar proteins. There is no transmembrane helices.

Solution:

FGF3: P11487 (NP_005238.1), Fibroblast growth factor 3-role in the regulation of embryonic development... Contains 13 valins.

Longest fragment after trypsin digestion has 26 aminoacids.


In the databes of reference sequences, there is 19 similar proteins.

There is no transmembrane helices.

P11487 (FGF3_HUMAN) / <u>NP_005238.1</u>

Fibroblast growth factor 3

-role in the regulation of embryonic development...

Exam test:

Version 1 Find human protein sequence FGF3 • What is the accession number and function of this protein? How many valines does the sequence contain? Maximum 10 points How long is the longest fragment after trypsin digestion? • How many human similar reference proteins are in the databases? ٠ 8.5-10p: 1 • Does the sequence contain any transmembrane regions? 7-8p: 2 5-6.5p: Download segence NM_001757.3 3 • What does this sequence encode ? • Is there a complementary sequence to primer R1? >R1 GCTCTGACGCTCATGATGC • In which exon is the complemetary sequence for this primer? Is the primer suitable for PCR with Ta=60°C? • Design suitable F primer for this experiment.

What does this sequence encode ?

Is there a complementary sequence to primer R1?

In which exon is the complemetary sequence for this primer?

Is the primer suitable for PCR with Ta=60°C?

Design suitable F primer for this experiment (gene detection).

>R1 GCTCTGACGCTCATGATGC

What does this sequence encode ?

SNCBI Resources 🖂 How To 🖂								
Nucleotide Nucleotide NM_001757.3 × Advanced	Search							
GenBank -	Send to: 🚽							
Homo sapiens carbonyl reductase 1 (CBR1), transcript variant 1, mRNA NCBI Reference Sequence: NM_001757.3 FASTA Graphics								

What does this sequence encode ?

Is there a complementary sequence to primer R1?

In which exon is the complemetary sequence for this primer?

Is the primer suitable for PCR with Ta=60°C?

Design suitable F primer for this experiment.

>R1 GCTCTGACGCTCATGATGC

Is there a complementary sequence to primer R1?

		omp	ICITICI	itai y	sequei		inci					GCI	СТС	GACG	GCTC	CATG	ATG	\mathcal{C}	
Multali	in:																		
	261	270	280	290	300	310 320	330	340	350	360	370	380	39	1000					
CMC	R s		oulation Su		GCTCT-GACGC	GRCGTGRCGCGGGGCCR TCATGATGC aCaTGRcGC	•••••												
Format Conversion -Combine FASTA -EMBL to FASTA -EMBL to FASTA -EMBL Trans Extractor -EMBL Trans Extractor -FMBL Trans Extractor -Filter DNA -Filter Protein	Reverse Co it contains	an ORF on the r	erts a DNA seque everse strand.		se, complement, or r to the text area belov	>Untitled reve GCATCATG Conser	AGCGT	-											
-GenBank to FASTA -GenBank Feature Extractor -GenBank Trans Extractor -One to Three -Range Extractor DNA -Range Extractor Protein -Reverse Complement -Split Codons -Solit FASTA	Submit	Clear Reset	1		~	NM_00175 Conser	7.3 CGATO R	+		0 560 ++ Gatgtgtgcacag					ATCTAGCA GCA1		CAGAGCCCTTA CAGAGC	640 ARAGCTGCAGC	650 1 CCAGA
-Three to One -Window Extractor DNA -Window Extractor Protein Sequence Analysis	• reve	se-complement `	~			Uniter	651		670 68	0 690	700	710	720	730	740	750	760	770	780

NR1

780

Is there a complementary sequence to primer R1?

>R1 GCTCTGACGCTCATGATGC

Graphics 🗸

Send to: -

Homo sapiens carbonyl reductase 1 (CBR1), transcript variant 1, mRNA

NCBI Reference Sequence: NM_001757.3 GenBank FASTA

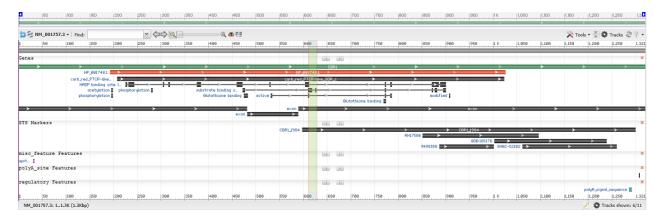
NCBI: Graphic

Link To This View | Feedback 600 |650 |750 800 850 |900 1950 |1 K 1,050 1,100 1,150 1,200 S NM_001757.3 • Find: 🖹 🗶 ols • 😤 🗱 Tracks 🦧 🤋 = Q, 🜆 📑 Search Result 150 250 1488 1450 1.299 1,250 Features Components V Sequence Tracks Label 4 То Strand GCTCTGACGCTCATGATGC 611 629 Negative NP_001748.1 carb_red_PTCR-like... NADP binding site [...] ubstrate binding s Glutathione hinding STS Markers CBR1_1984 🔳 1,250 1.200 1,321 2 S NM_001757.3 - Find: ~ (\$\$)Q 🔀 Tools • 😤 🗱 Tracks 🦧 🤋 • 0 🝈 📑 1610 1636 1646 GCTGCAGCCCAGA polyA_signal_sequence 📕 1,200 1,250 Tracks shown: 6/11

What does this sequence encode ?

Is there a complementary sequence to primer R1?

In which exon is the complemetary sequence for this primer?


Is the primer suitable for PCR with Ta=60°C?

Design suitable F primer for this experiment.

>R1 GCTCTGACGCTCATGATGC

In which exon is the complemetary sequence for this primer?

NCBI: Graphic

>R1 GCTCTGACGCTCATGATGC

 \rightarrow third exon

What does this sequence encode ?

Is there a complementary sequence to primer R1?

In which exon is the complemetary sequence for this primer?

Is the primer suitable for PCR with Ta=60°C?

Design suitable F primer for this experiment.

>R1 GCTCTGACGCTCATGATGC

Is the primer suitable for PCR with Ta=60°C?

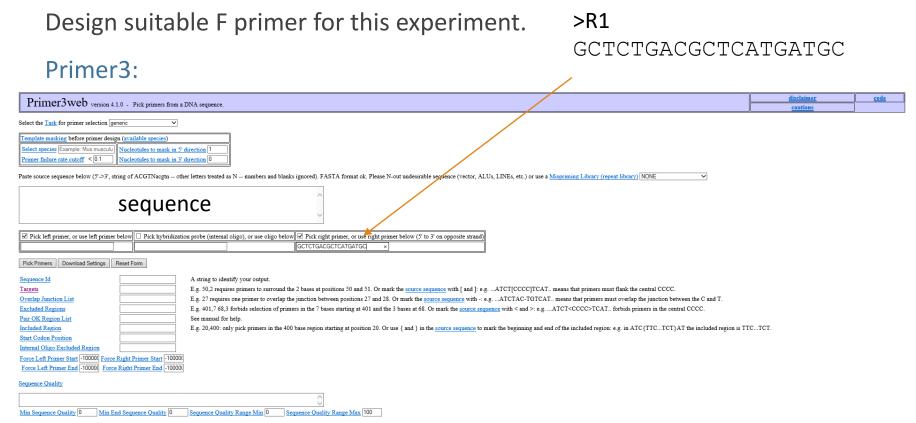
OligoCalc:

Oligo Calc: Oligonucleotide Properties Calculator	_
Enter Oligonucleotide Sequence Below OD calculations are for single-stranded DNA or RNA	
Nucleotide base codes	I
GCT CTG ACG CTC ATG ATG C	
Reverse Complement Strand(5' to 3') is:	
GCA TCA TGA GCG TCA GAG C	
5' modification (if any) 3' modification (if any) Select molecule V ssDNA V	
50 nM Primer 50 mM Salt (Na ⁺)	
Calculate Swap Strands BLAST mfold	
Physical Constants Melting Temperature (TM) Calculations	
Length: 19 Molecular Weight: 5779.8 [#] GC content: 58 1 53.2 °C (Basic) 1 ml of a sol'n with an Absorbance of 1 at 260 nm 2 59.5 °C (Salt Adjusted) <	→yes.
Thermodynamic Constants Conditions: 1 M NaCl at 25°C at pH 7.	
RInK 33.404 cal/(°K*mol) deltaH 151.7 Kcal/mol	
deltaG 25.3 Kcal/mol deltaS 391.3 cal/(*K*mol)	
Deprecated Hairpin/self dimerization calculations	
5 (Minimum base pairs required for single primer self-dimerization) 4 (Minimum base pairs required for a hairpin)	

>R1 GCTCTGACGCTCATGATGC

Citation: Kibbe WA. 'OligoCalc: an online oligonucleotide properties calculator'. (2007)

What does this sequence encode ?


Is there a complementary sequence to primer R1?

In which exon is the complemetary sequence for this primer?

Is the primer suitable for PCR with Ta=60°C?

Design suitable F primer for this experiment.

>R1 GCTCTGACGCTCATGATGC

Pick Primers Download Settings Reset Form

Design suitable F primer for this experiment.

Primer3:

Primer3 Output

PRIMER PICKING RESULTS FOR NM_001757.3 Homo sapiens carbonyl reductase 1 (CBR1), transcript variant 1, mRNA Template masking not selected to mispriming library specified Jsing 1-based sequence positions
 OLIGO
 start
 len
 tm
 gc%
 any th
 3' th hairpin seq

 LEFT PRIMER
 477
 20
 59.12
 58.00
 0.00
 0.00
 0.00
 CAAGGTTGCTGAICCCCACAC

 RIGHT PRIMER
 623
 19
 59.07
 57.89
 0.00
 1.26
 0.00
 CCTCTGACCCTATGATGCC
 RIGHT PRIMER 6 SEQUENCE SIZE: 1321 INCLUDED REGION SIZE: 1321 PRODUCT SIZE: 153, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00 61 GGCCGGGCGTGTAACCCACGGGTGCGCGCCCACGACCGCCAGACTCGAGCAGTCTCTGG 121 ACRCGCTGCGGGGCTCCCGGGCCTGAGCCAGGTCTGTTCTCCCCGCGGGGTGTTCCGCGCG 181 CCCCGTTCAGCCATGTCGTCCGGCATCCATGTAGCGCTGGTGACTGGAGGCAACAAGGG 241 ATCGGCTTGGCCATCGTGCGCGACCTGTGCCGGCTGTTCTCGGGGGGACGTGGTGCTCACG 301 GCGCGGGRCGTGRCGCGGGGCCRGGCGGGCCGTRCRGCRGCTGCRGGCGGRGGGCCTGRGC 361 CCGCGCTTCCACCRGCTGGRCATCGRCGATCTGCRGCGCCTCCGCGCCCTGCGCGACTTC 421 CIGCGCAAGGAGIACGGGGGGCCIGGACGIGCIGGICAACACGCGGGGCATCGCCITCAAG 481 GITGCTGATCCCACACCCTTTCATATTCAAGCTGAAGTGACGATGAAAACAAATTTCTTT 541 GGTRCCCGAGATGTGTGCRCRGRATTRCTCCCTCTARTARARCCCCCRRGGGRGRGTGGTG

601 RACGTATCTAGCATCATGAGCGTCAGAGCCCTTAARAGCTGCAGCCCAGAGCTGCAGCAG

>R1

GCTCTGACGCTCATGATGC

example: >F CAAGGTTGCTGATCCCACAC

What does this sequence encode ?

Is there a complementary sequence to primer R1?

In which exon is the complemetary sequence for this primer?

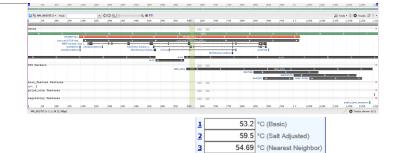
Is the primer suitable for PCR with Ta=60°C?

Design suitable F primer for this experiment.

Solution:

This sequence encodes carbonyl reductase 1 (CBR1). Yes, there is complementary sequence to primer R1. It is within 3rd exon. At Ta=60°C the primer should work. An example of suitable F primer: F:CAAGGTTGCTGATCCCACAC >R1 GCTCTGACGCTCATGATGC

Solution:


This sequence encodes carbonyl reductase 1 (CBR1).

Yes, there is complementary sequence to primer R1.

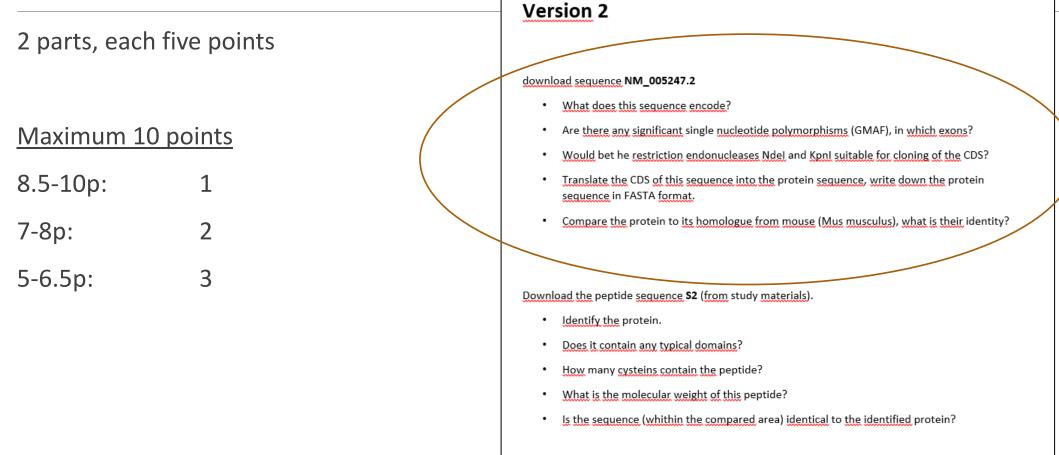
It is within 3rd exon.

At Ta=60°C the primer should work.

An example of suitable F primer: F:CAAGGTTGCTGATCCCACAC

Homo sapiens carbonyl reductase 1 (CBR1), transcript variant 1, mRNA

NCBI Reference Sequence: NM_001757.3


FASTA Graphics

ASTA	Graphics														0EA
		1		-						,	-	-	-		650
N	1_001757.3 R Consensus	CGATG	CGATGARAACAAATTTCTTTGGTACCCGAGATGTGCGCACAGAATTACTCCCTCTAATAAAACCCCCAAGGGAGAGTGGTGAACGTATCTAGCATCATGAGCGTCAGAGCC GCATCATGAGCGTCAGAGC GCATCATGAGCGTCAGAGC GCATCATGAGCGTCAGAGC												
		651	660	670	680	690	700	710	720	730	740	750	760	770	780
NI	1_001757.3	ĠCTGC	ACCAGAAG	TCCGCAGTGA	GACCATCACT	rgaggaggagg	TGGTGGGGCT	rcatgracaa	GTTTGTGGAGG	GATACAAAGAA	IGGGAGTGCAC	CAGAAGGAGG	GCTGGCCCAG	CACCCCATAC	GGGGTG

Template masking not selected No mispriming library specified Using 1-based sequence positions										
OLIGO	start	len	tm	get	any th	3' th	hairpin	seq		
LEFT PRIMER	477	20	59.12	55.00	0.00	0.00	0.00	CAAGGTTGCTGATCCCACAC		
RIGHT PRIMER	629	19	59.07	57.89	0.00	1.25	0.00	GCTCTGACGCTCATGATGC		
SEQUENCE SIZE: INCLUDED REGIO		321								

..........

Exam test:

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

What does this sequence encode?

NCBI/Nucleotide: Homo sapiens fibroblast growth factor 3 (FGF3), mRNA

NCBI Reference Sequence: NM_005247.2

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

NCBI / Graphic: (Track: Sequence variation)

GMAF >= 0.01							×
	6/T rs143969364	G/T rs41538178		R/6 rs35420992			
Genes - Exon							×
> >	> >	> >	exon	> >	> >	>	\rightarrow
		e	xon >				
C							

 \rightarrow yes, in the first and third exons

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

Restriction summary:	Kpnl ggtac c	289	
	Ndel ca tatg	none	-

ightarrow KpnI is not suitable

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

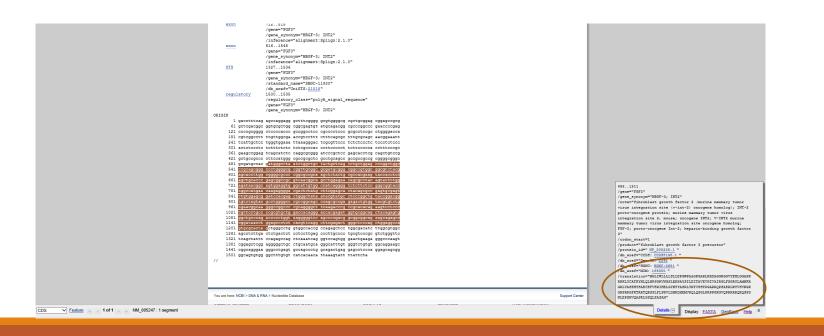
Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

NCBI:flat file- highlight sequence features "CDS" – Translate

		gatat Gaga ta daccagg	Sequence Manipulation Suite:
		cagaccontra ve gaganagg cacalegacangacageageatata	Translate
	EXON /14810	Format Conversion	Translate accepts a DNA sequence and converts it into a protein in the reading frame you specify. Translate supports the entire IUPAC alphabet
	/gene="FGF3" /gene synonym="HBGF-3; INT2"	-Combine FASTA -EMBL to FASTA	
	/inference="alignment:Splign:2.1.0" excn 816.1548	-EMBL Feature Extractor -EMBL Trans Extractor	Paste a raw sequence or one or more FASTA sequences into the text area below. Input limit is 200,000,000 characters.
	/gene="FGF3"	-Filter DNA -Filter Protein	CCACGAGATGGTGCGGCAGCTACAGAGTGGGCTGCCCAGACCCCCTGGTAAGGGGGTCCAG CCCCGACGG
	/gene_synonym="HBGF-3; INT2" /inference="alignment:Splign:2.1.0"	-GenBank to FASTA	CGGCGCGCAGAGCAGGAGCCCGGATAACCTGGAGCCCTCTCACGTTCAGGCTTCGAGACTGG
	STS 13271536 /gene="FGF3"	-GenBank Feature Extractor -GenBank Trans Extractor	GCTCCCAGC
	/gene_synonym="HBGF-3; INT2"	-One to Three -Range Extractor DNA	TGGAGGCCAGTGCGCACTAG
	/standard_name="SHGC-11930" /db_xref="UniSTS:21518"	-Range Extractor Protein	
	regulatory 15301535 /regulatory class="polyA signal sequence"	-Reverse Complement -Split Codons	Submit Clear Reset
	/gene="FGF3"	-Split FASTA -Three to One	• Translate in reading frame 1 V on the direct V strand.
	/gene_synonym="HBGF-3; INT2" ORIGIN	-Window Extractor DNA	- Transate in reading in and i v of the function of the functi
	1 gacettteag agecaggagg getttegggg gegtgggggeg egetgeggag eggageegeg	-Window Extractor Protein Sequence Analysis	• Ose the standard (1)
	61 getegaegge ggtgegetgg eggegagtgt atgeagaegg egeceggeee gaacceegag 121 eecegegggg etececaece geeggeetee egeceeteee gegeeteege etggggaeca	-Codon Plot -Codon Usage	*This page requires JavaScript. See browser compatibility.
	181 egteggeett tigtiggega acegteetti etticagege titigegeage aacggaaatt 241 teatigetee tiggigiggaaa tiaaagggae tegegiteee teteteeete teeeteteee	-CpG Islands	*You can mirror this page or use it off-line.
	301 actetecete tettetete tetegeceae cettececet tettececea cettecege	-DNA Molecular Weight -DNA Pattern Find	
	361 gaageeggag teageatete eaggegeggg ateeegete gageaceteg eagetgteeg 421 getgeegeee etteeatggg egeegegete geetgeagee geegeegeeg eggggeggge	-DNA Stats -Fuzzy Search DNA	Mon Nov 8 02:56:29 20 🧟 Sequence Manipulation Suite - Internet Explorer — 🛛 🗙
	481 gegatgeese gatgegeeta atetggetge taetgeteag eetgetggag eeeggetgge 561 begeageggg eeetggggeg eggttgegge gegatgeggg eggeegtgge ggegttaeeg	-Fuzzy Search Protein	Vald XHTML 1.0; Vald CA
	601 ageacettgg eggggggegee eggegeegea agetetaetg egeeaegaag taceacetee	-Ident and Sim -Multi Rev Trans	about:blank
	661 agotgoacoo gagoggoogo gtoaacoggoa gootggagaa cagogootao agtattttgg 721 agataacego agtggaggtg ggoattgtgg coatcagggg totottotoo gggoggtaco	-Mutate for Digest -ORF Finder	
	781 bggeeatgaa caagagggga egaetetatg etteggagea etaeagegee gagtgegagt 841 btgtggageg gateeaegag etgggetata ataegtatge eteeeggetg taeeggaegg	-Painvise Align Codons -Painvise Align DNA	Soubor Úpravy Zobrazit Oblíbené položky Nástroje Nápověda
	901 tgtctagtac gectggggee egecggeage ecagegeega gagactgtgg taegtgtetg	-Pairwise Align Protein	Translate results
	961 tgaacggcaa gygeeggeee egeagggget teaagaceeg eegeacacag aagteeteee 1021 tgtteetgee eegegtgetg gaceacaggg aceacgagat ggtgeggeag etacagagtg	-PCR Primer Stats -PCR Products	
	1081 ggetgeeeag acceeetggt aagggggtee ageeeegaeg geggeggeag aageagagee 1141 eggataaeet ggageeetet eaegtteagg ettegagaet gggeteeeag etggaggeea	-Protein GRAVY -Protein Isoelectric Point	>rf 1 NM_005247.2:492-1211 Homo sapiens fibroblast growth factor 3 (FGF3), mRNA MGLIWILLLSLLEPGWPAAGPGARLRRDAGGRGGVVEHLGGAPRRRKLYCATK YHLOLHP
	1201 gtgcgcacta g <mark>ctgggcctg gtggccaccg ccagagctec tggcgacate ttggcgtgge</mark>	-Protein Molecular Weight -Protein Pattern Find	SGR VNGSLENSAYSILETI AVEVGIVAIRGI FSGR YLAMNKRGRL YASEHYSAECEPVER
	1261 agcetettga etetgaetet eeteettgag eeettgeeee tgegteeege gtetgggtte 1321 teagetattt eeagageeag eteaaateag ggteeagtgg gaactgaaga gggeeeaagt	-Protein Stats	IHELGYNTYASRLYRTVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRRTQKSSLFLP
	1381 eggagetegg agggggetge etgeaatgea gggeatttgt gggetetgtgt ggeaggaage 1441 eggeagggaa gggeetgagt geeageeetg geagaetgag gageeteeea ggageagegg	-Restriction Digest -Restriction Summary	RVLDHRDHEMVRQLQSGLPRPPGKGVQPRRRQKQSPDNLEPSHVQASRLGSQLEASAH*
	1501 ggcagtgtgg ggctttgtgt catcacaaca ttaaagtatt ttattcta	-Reverse Translate	
		Sequence Figures	
			/dg_tktt* HHI 10100 * /transleton="NGITHLILLELEPHPAAGPGARLEREAGGROUTTHLOGAPR
			RRALFVORTHYTHILGATH SGARWOGLINGATIGATIGATIGATET AF UTFOTTAL FRAGT LOGATI LAMERRA GRALFANDERFVORTHEILGATUR MUTTALARLINGATUS STATARARDARG SARALE HUVYTHORA
	You are here: NCBI > DNA & RNA > Nucleotide Database	Support Ce	GRERREFETRETORSSLFLERVLDHEDHEMVROLOSGLEREPERKOVOFRERKOVOSFD
CDS Y Feature a c 1 of 1 > > NM_005247 : 1 segment			Destails () Display FASTA centiants Help (X)


Translate the CDS of this sequence into the protein sequence, write down the protein sequence in **FASTA format**.

>protein-FGF3

MGLIWLLLSLLEPGWPAAGPGARLRRDAGGRGGVYEHLGGAPRRRKLYCATKYHLQLHP SGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAMNKRGRLYASEHYSAECEFVER IHELGYNTYASRLYRTVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRRTQKSSLFLP RVLDHRDHEMVRQLQSGLPRPPGKGVQPRRRRQKQSPDNLEPSHVQASRLGSQLEASAH*

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

NCBI:flat file- highlight sequence features "CDS" – translated sequence "in the box"

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in **FASTA format**.

>protein-FGF3

MGLIWLLLSLLEPGWPAAGPGARLRRDAGGRGGVYEHLGGAPRRRKLYCATKYHLQLHP SGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAMNKRGRLYASEHYSAECEFVER IHELGYNTYASRLYRTVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRRTQKSSLFLP RVLDHRDHEMVRQLQSGLPRPPGKGVQPRRRRQKQSPDNLEPSHVQASRLGSQLEASAH*

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

 \rightarrow Find mouse homologue-Uniprot (FGF3)

Emboss Needle:

ŧ

<pre># Aligned_sequences: 2 # Aligned_sequences: 2 # 1: EMBOSS_001 # 2: FGF3_MOUSE # Matrix: EBLOSUM62 # Gap_menatry: 10.0 # Extend_menatry: 0.5 #</pre>						
# Identity: 197/	249 (79.1%)					
# Gaps: 14/ # Score: 1021.5 # # #	249 (5.6%)					
EMB055_001 1	MGLIWLLLLSLLEPGWPAAGPGARLRRDAGGRGGVYEHLGGAPRRRKLYC	50				
FGF3_MOUSE 1	MGLIWLLLSLEPSWPTTGPGTRLRRDAGGRGGVYEHLGGAPRRRKLYC	50				
EMBOSS_001 51	ATKYHLQLHPSGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAMN	100				
FGF3_MOUSE 51	ATKYHLQLHPSGRVNGSLENSAYSILEITAVEVGVVAIKGLFSGRYLAMN	100				
EMBOSS_001 101	KRGRLYASEHYSAECEFVERIHELGYNTYASRLYRTVSSTPGARROPSAE	150				
FGF3_MOUSE 101	KGRLYASDHYNAECEFVERIHELGYNTYASRLYRTGSSGPGAQRQPGAQ	150				
EMBOSS_001 151	RLWYVSVNGKGRPRRGFKTRRIQKSSLFLPRVLDHRDHEMVRQLQSGLPR	200				
FGF3_MOUSE 151	RPWYVSVNGKGRPRRGFKTRRTQKSSLFLPRVLGHKDHEMVRLLQSSQPR	200				
EMBOSS_001 201	PPGKGVQPRRRRQ-KQSPDNLEPSHVQASRLGSQLEASAH	239				
FGF3_MOUSE 201	. : . : .: .: .: APGEGSQPRQRRQKKQSPGDHGKMETLSTRATPSTQLHTGGLAVA	245				

What does this sequence encode?

Are there any significant single nucleotide polymorphisms (GMAF), in which exons?

Would be the restriction endonucleases NdeI and KpnI suitable for cloning of the CDS?

Translate the CDS of this sequence into the protein sequence, write down the protein sequence in FASTA format.

Compare the protein to its homologue from mouse (Mus musculus), what is their identity?

Solution: This gene encodes Fibroblast Growth Factor 3 GMAF are in the 1st and 3rd exon. Restriction endonuclease KpnI is not suitable for cloning. The FASTA of the protein is: The indentity of human and mouse FGF3 proteins is 79.1 %.

>protein-FGF3

MGLIWLLLSLLEPGWPAAGPGARLRRDAGGRGGVYEHLGGAPRRRKLYCATKYHLQLHP SGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAMNKRGRLYASEHYSAECEFVER IHELGYNTYASRLYRTVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRRTQKSSLFLP RVLDHRDHEMVRQLQSGLPRPPGKGVQPRRRQKQSPDNLEPSHVQASRLGSQLEASAH*

Solution:

This gene encodes Fibroblast Growth Factor 3

GMAF are in the 1st and 3rd exon.

Restriction endonuclease KpnI is not suitable for cloning.

The FASTA of the protein is:

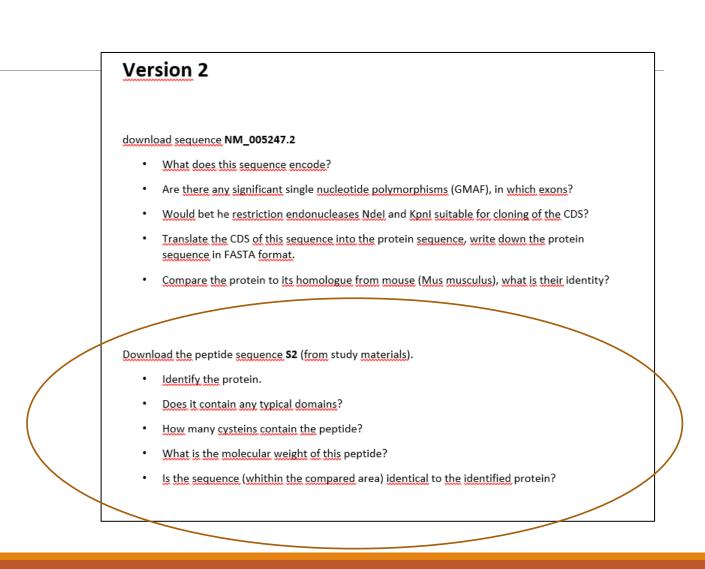
The indentity of human and mouse FGF3 proteins is 79.1 %.

>protein-FGF3 MGLIWLLLLSLLEPGWPAAGPGARLRRDAGGRGGVYEHLGGAPRRRKLYCATKYHLQLHP SGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAMNKRGRLYASEHYSAECEFVER IHELGYNTYASRLYRTVSSTPGARRQPSAERLWYVSVNGKGRPRRGFKTRRTQKSSLFLP RVLDHRDHEMVRQLQSGLPRPPGKGVQPRRRRQKQSPDNLEPSHVQASRLGSQLEASAH*

FGF3 MOUSE

Homo sapiens fibroblast growth factor 3 (FGF3), mRNA # Aligned_sequences: 2 # 1: EMBOSS 001 # 2: FGF3_MOUSE # Matrix: EBLOSUM6 # Gap_penalty: 10.0 NCBI Reference Sequence: NM 005247.2 # Extend_penalty: 0.5 # Length: 249 GMAF >= 0.01 197/249 (79.1%) 14 # Identity: 210/249 (84.3%) # Similarity: 6/T | rs143969364 G/T | rs41538178 A/G | rs35420992 14/249 (5.6%) ∉ Gaps: # Score: 1021.5 Genes - Exon 14 ||||-1 EMBOSS_001 1 MGLIWLLLSLEPGWPAAGPGARLERDAGGRGGVYEHLGGAPEREKLY FGF3_MOUSE 1 MGLIWLLLSLLEPSWFTTGFGTRLRRDAGGRGGVYEHLGGAPRRRKLY Ndel caltatg none EMBOSS 001 51 ATKYHLQLHPSGRVNGSLENSAYSILEITAVEVGIVAIRGLFSGRYLAM 51 ATKYHLQLHPSGRVNGSLENSAYSILEITAVEVGVVAIKGLFSGRYLAMN FGF3 MOUSE 101 KRGRLYASEHYSAECEFVERIHELGYNTYASRLYRTVSSTFGARRQPSAE EMBOSS 001 1.001 9190900 101 KRGRLYASDHYNAECEFVERIHELGYNTYASRLYRTGSSGFGAQRQPGAQ FGF3_MOUSE Kpnl ggtac|c 289 EMBOSS_001 151 RLWYVSVNGKGRPRRGFKTRRTQKSSLFLPRVLDHRDHEMVRQLQSGLPR 151 REWYVSVNGKGRPRRGFKTRRTQKSSLFLPRVLGHKDHEMVRLLQSSQPR FGF3 MOUSE EMBOSS 001 201 PPGKGVOPRRRQ-KOSPDNLEPSHVOASRLGSOLEASAH-

Exam test:


2 parts, each five points

Maximum 10 points

9-10p: 1

7-8p: 2

5-6p: 3

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?

Is the sequence (whithin the compared area) identical to the identified protein?

>S2

CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPPPPPPPTPGTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?

Is the sequence (whithin the compared area) identical to the identified protein?

>S2

CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPPPPPPTQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC

Identify the protein.

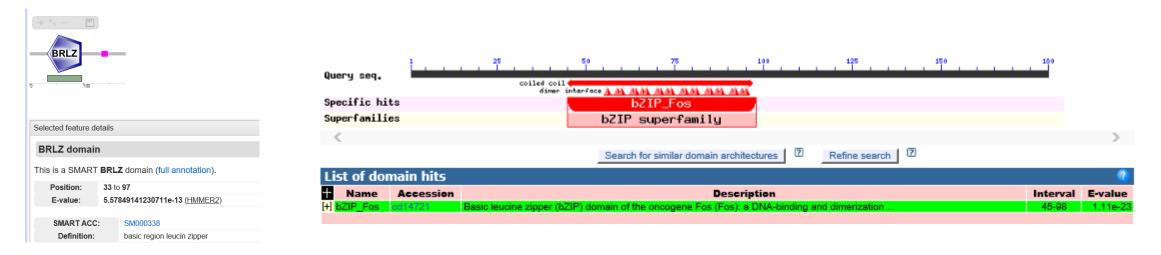
BLAST [®] » bla	astp suite	Putative conserved domains have been detected, click on the image below for detailed results.			
		Query seq.	colled coll defined and Alah Alah Alah Alah Alah Alah Alah Alah		
blastn blastp bla	astx tblastn tblastx	Superfamilies	bZIP superfamily		
>S2 CGPSTSGTTSGPG	Sequence Clear Query subrange (e) number(s), gi(s), or FASTA sequence(s) (e) Clear Query subrange (e) PARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRELT From From KAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD From From		Distribution of the top 44 Blast Hits on 44 subject sequences Mouse over to see the title, click to show alignments Color key for alignment scores		
Or, upload file	Procházet	orden tast isotom 1 (Hono sepieral	134 1354 1498 <u>16-001 1000</u> 22		
Job Title	S2 Enter a descriptive title for your BLAST search 😡				
□ Align two or m	ore sequences 😡				
Choose Searc	ch Set		→ protein fosB isoform 1 [Homo sapiens]		
Database	♦ Reference proteins (refseq_protein)		NCBI Reference Sequence: NP_006723.2 Identical Proteins FASTA Graphics		
Organism Optional Homo sapiens (taxid:9606)					
Exclude	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.				
Optional					
Entrez Query Optional	You Tube Create custom database				
	Enter an Entrez query to limit search 😡				

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?


Is the sequence (whithin the compared area) identical to the identified protein?

>S2

CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPPPPPPTQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC

Does it contain any typical domains?

PFAM, CDD, SMART..

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?

Is the sequence (whithin the compared area) identical to the identified protein?

>S2

CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPPPPPPTPGTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC

How many cysteins contain the peptide?

gatatto catatagacatata da tata gaal Grago ya a Gaccago	Sequence Manipulation Suite:									
	Protein S	Protein Stats								
Format Conversion		Protein Stats returns the number of occurrences of each residue in the sequence you enter. Percentage totals are also given for each residue, and I								
-EMBL to FASTA -EMBL Feature Extractor -FMBL Trans Extractor -Filter DNA -GenBank Feature Extractor -GenBank Feature Extractor -GenBank Trans Extractor -One to Three -Range Extractor DNA -Range Extractor Protein -Reverse Complement -Split Codons	Paste the raw sequence or one or more FASTA sequences into the text area below. Input limit is 500,000,000 characters. CGPSTSGTTSGPGPARPARPRPREELTPEEEEKRRVRRENKLAAAKCRNRRELT DRLQAETDQLEEEKAELESELAELQKEKERLEFVLVAHKPGCKTPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPLPFQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC Submit Clear Reset *This page requires JavaScript. See browser compatibility.									
-Split FASTA -Three to One				use it off-line.	paupility.					
-Window Extractor DNA	Tou can n		page of	use it off-fille.						
-Window Extractor Protein Sequence Analysis								new window	home I c	ritation
-Codon Plot	Mon Nov 6 02:5	6:29 2017						new window	nome re	auton
-Codon Usage	Valid XHTML 1.0:	Valid CSS								
-CpG Islands										
-DNA Molecular Weight -DNA Pattern Find										
-DNA Pattern Find -DNA Stats			_							
-Fuzzy Search DNA			🗐 Seque	nce Manipulation Suit	te - Internet Explore	r		_		×
-Fuzzy Search Protein										
-Ident and Sim		6	about:	hlank						
-Multi Rev Trans -Mutate for Digest				Diank						
-ORF Finder				10 7 1 3	0.111 / 1.71	NIZ CONTRACTOR	* 1			
-Pairwise Align Codons		2	oubor	Úpravy Zobrazit	Oblíbené položky	Nástroje Nápo	ověda			
-Pairwise Align DNA		D	rotain Ot	ats results						
-Pairwise Align Protein -PCR Primer Stats										~
-PCR Products		R	esults to	or 180 residue seque	ence "Untitled" sta	rting "CGPSTSG	5115"			
-Protein GRAVY		P	Pattern:				Times found:	Percen	tage:	
-Protein Isoelectric Point		E E								_
-Protein Molecular Weight -Protein Pattern Find		A	۱				15	8.33		
-Protein Stats			1				Ū	0.00		
-Restriction Digest										_
-Restriction Summary -Reverse Translate		0	;				4	2.22		
-Translate)				6	3.33		_
Sequence Figures										
-Color Align Conservation	E 24 13.33									
-Color Align Properties		F					5	2.78		
-Group DNA -Group Protein							-			
-Group Protein -Primer Map	G 11 6.11									

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?

Is the sequence (whithin the compared area) identical to the identified protein?

>S2 CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPLPFQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC

What is the molecular weight of this peptide?

Format Conversion

-Combine FASTA

-EMBL to FASTA -EMBL Feature Extractor -EMBL Trans Extractor

-Filter DNA -Filter Protein -GenBank to FASTA -GenBank Feature Extractor -GenBank Trans Extractor

-One to Three -Range Extractor DNA -Range Extractor Protein -Reverse Complement -Split Codons -Split FASTA -Three to One -Window Extractor DNA -Window Extractor Protein Sequence Analysis

-Codon Plot

-Codon Usage

-CpG Islands

Sequence Manipulation Suite:

Protein Molecular Weight

Protein Molecular Weight accepts one or more protein sequences and calculates mole in relation to a set of protein standards.

Paste the raw sequence or one or more FASTA sequences into the text area below. Ir

	CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPPPTQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC	^				
		~				
	Submit Clear Reset					
Add 1 copies of Nothing to the above sequence.						

*This page requires JavaScript. See browser compatibility. *You can mirror this page or use it off-line. Protein Molecular Weight results Results for 180 residue sequence "Untitled" starting "CGPSTSGTTS" 19.91 kDa

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?

Is the sequence (whithin the compared area) identical to the identified protein?

>S2

CGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD LPGSAPAKEDGFSWLLPPPPPPPPPPPPPTQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSC

Is the sequence (whithin the compared area) identical to the identified protein?

Comparison-Multalin:

protein fosB isoform 1 [Homo sapiens]

NCBI Reference Sequence: NP_006723.2 Identical Proteins <u>FASTA</u> <u>Graphics</u>

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
sp1P535391F0SB_HUMAN S2 Consensus	MFQAFP	GDYDSGSR	CSSSPSAES	QYLSSYDSFG	_								SGGASGSGGPS CGPS cGPS	TSGTTS
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
sp 1P53539 I FOSB_HUMAN S2 Consensus	gpgpar gpgpar	PARARPRR PARARPRR	PREETL TPE	EEEKRRVRREF EEEKRRVRREF	RNKLAAAKCR RNKLAAAKCR	NRRRELTDRLO	QAETDQLEEE Qaetdqleee	KAELESEIAEL KAELESEIAEL	.QKEKERLEF .QKEKERLEF	VLVAHKPGCK VLVAHKPGCK	lpyeegpgpgp lpyeegpgpgp	LAEVRDLPG LAEVRDLPG	Sapakedgfsh Sapakedgfsh Sapakedgfsh	LLPPPP
	261	270	280	290	300	310	320	330	338					
sp I P53539 I FOSB_HUMAN S2 Consensus	PPPLPF PPPLPF	QTSQDAPP QTSQDAPP	NLTASLETH	SEVQVLGDPFF SEVQVLGDPFF	PYYNPSYTSS Pyynps <mark>c</mark>	FYLTCPEYSA	FAGAQRTSGS	DQPSDPLNSPS	LLAL					

 \rightarrow It differs in the first and the last aminoacid

Identify the protein.

Does it contain any typical domains?

How many cysteins contain the peptide?

What is the molecular weight of this peptide?

Is the sequence (whithin the compared area) identical to the identified protein?

Solution:

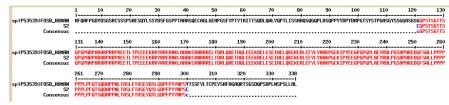
Peptide is probably human FosB homologue.Yes, it contains leucine zipper bZIP.Contains four cysteinsMw=19.1 kDa.It differs from the human homologue in the first and the last aminoacid.

Solution:

Peptide is probably human FosB homologue.

Yes, it contains leucine zipper bZIP.

Contains four cysteins


Mw=19.1 kDa.

It differs from the human homologue in the first and the last aminoacid.

Protein Stats results Results for 180 residue sequence "Untitled" starting "CGPSTSGTTS"					
Pattern:	Times found:	Percentage:			
A	15	8.33			
В	0	0.00			
С	4	2.22			
n	a	10.00			


Protein Molecular Weight results Results for 180 residue sequence "S2" starting "CGPSTSGTTS"

19.91 kDa

protein fosB isoform 1 [Homo sapiens]

NCBI Reference Sequence:NP_006723.2Identical ProteinsFASTAGraphics

lected feature details	
RLZ domain	

This is a SMART BRLZ domain (full annotation)

Position:	33 to 97			
E-value:	5.57849141230711e-13 (HMMER2)			
SMART ACC:		SM000338		
Definition:		basic region leucin zipper		