Introduction to applied

bioinformatics

"Protein bioinformatics II"

Retrieving protein sequences from databases

Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters

Prediction of proteases cutting

Predicting elements of protein secondary structure, domains

Predicting 3-D structure and the domain organization of proteins

Finding all proteins that share a similar sequence and Classifying proteins into families

Finding evolutionary relationships between proteins, drawing proteins' family trees

Computing the optimal alignment between two or more protein sequences

• • •

protease = enzyme that catalyzes proteolysis (e.g. digestion)

Examples: trypsin - digestive enzyme, present in duodenum)

- cleaves sequence "behind" K(lysin) or R (arginin)

proteinase K - commonly used in molecular biology to digest protein and remove contamination from preparations of nucleic acid.

- cleaves ubiquitously

enterokinase - activation of zymogens (precursors of digestive enzymes like trysinogen)

specific cleavage site (Asp-Asp-Asp-Lys)

SIB Bioinformatics Resource Portal		PeptideCutter	Home Conta
PeptideCutter			
PeptideCutter [references / documentation] predicts potential	ential cleavage sites cleaved by proteases or chemicals in a g	iven protein sequence. PeptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of cle	avage site positions.
snter a UniProtKB (Swiss-Prot or TrEMBL) protein identif	asta format!)	P04406), or an amino acid sequence (e.g. 'SERVELAT'):	
Perform the cleavage of the protein. Reset the fields.			
Please, select			
	als		
Please, select all available enzymes and chemicals	ıls □ Asp-N endopeptidase	☐ Asp-N endopeptidase + N-terminal Glu	
Please, select all available enzymes and chemicals only the following selection of enzymes and chemical		☐ Asp-N endopeptidase + N-terminal Glu☐ Caspase2	
Please, select ● all available enzymes and chemicals ○ only the following selection of enzymes and chemical □ Arg-C proteinase	☐ Asp-N endopeptidase		
Please, select ● all available enzymes and chemicals ⊃ only the following selection of enzymes and chemical □ Arg-C proteinase □ BNPS-Skatole	☐ Asp-N endopeptidase ☐ Caspase1	☐ Caspase2	
Please, select ● all available enzymes and chemicals ○ only the following selection of enzymes and chemical □ Arg-C proteinase □ BNPS-Skatole □ Caspase3	☐ Asp-N endopeptidase☐ Caspase1☐ Caspase4	☐ Caspase2 ☐ Caspase5	
Please, select ② all available enzymes and chemicals ○ only the following selection of enzymes and chemical □ Arg-C proteinase □ BNPS-Skatole □ Caspase3 □ Caspase6 □ Caspase9	☐ Asp-N endopeptidase ☐ Caspase1 ☐ Caspase4 ☐ Caspase7 ☐ Caspase10	☐ Caspase2 ☐ Caspase5 ☐ Caspase8	
Please, select ② all available enzymes and chemicals ○ only the following selection of enzymes and chemical □ Arg-C proteinase □ BNPS-Skatole □ Caspase3 □ Caspase6 □ Caspase9	☐ Asp-N endopeptidase☐ Caspase1☐ Caspase4☐ Caspase7	☐ Caspase2 ☐ Caspase5 ☐ Caspase8	

SIB EXPASY Bioinformatics Resource Portal	PeptideCutto	Pr Home Contact
PeptideCutter		
PeptideCutter [references / documentation] predicts potential clear	vage sites cleaved by proteases or chemicals in a given protein sequence. Pe	ptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of cleavage site positions.
Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifier, ID (e.e.	g. ALBU_HUMAN), or accession number, AC (e.g. P04406), or an amino acid	sequence (e.g. 'SERVELAT'):
Please, select ○ all available enzymes and chemicals ● only the following selection of enzymes and chemic	all enzymes or selectio	n of some
☐ Arg-C proteinase	☐ Asp-N endopeptidase	☐ Asp-N endopeptidase + N-terminal Glu
☐ BNPS-Skatole	□ Caspase1	□ Caspase2
☐ Caspase3	□ Caspase4	□ Caspase5
□ Caspase6	☐ Caspase7	☐ Caspase8
□ Caspase9	☐ Caspase10	
☐ Chymotrypsin-high specificity (C-term to [FYW], not before P) □ Chymotrypsin-low specificity (C-term to [FYV	VML], not before P)
☐ Clostripain (Clostridiopeptidase B)	□ CNBr	□ Enterokinase
☐ Factor Xa	☐ Formic acid	☐ Glutamyl endopeptidase
☐ GranzymeB	☐ Hydroxylamine	☐ Iodosobenzoic acid
☐ LysC	□ LysN	□ NTCB (2-nitro-5-thiocyanobenzoic acid)
☐ Neutrophil elastase		
☐ Pepsin (pH1.3)	☐ Pepsin (pH>2)	☐ Proline-endopeptidase
☐ Proteinase K	☐ Staphylococcal peptidase I	☐ Tobacco etch virus protease
☐ Thermolysin	☐ Thrombin	☑ Trypsin

PeptideCutter

e | Contact

Error

Fasta format provided (only raw format processed).

sequence (not fasta format!)

Name of enzyme	No. of cleavages	Positions of cleavage sites
Arg-C proteinase	9	4 5 15 53 119 139 201 211 273
Asp-N endopeptidase	12	40 54 61 83 95 133 163 198 216 229 244 266
Asp-N endopeptidase + N-terminal Glu	29	13 23 35 38 40 54 61 70 77 83 87 92 95 117 123 133 163 185 198 205 212 216 217 229 241 244 245 246 266
BNPS-Skatole	6	35 106 116 170 208 216
CNBr	7	1 22 45 132 155 165 239
Chymotrypsin-high specificity (C-term to [FYW], not before P)	30	18 20 35 43 47 66 76 100 106 107 116 117 121 125 127 129 133 138 156 179 182 191 208 216 222 223 229 233 237 252
Chymotrypsin-low specificity (C-term to [FYWML], not before P)	67	1 7 10 12 18 20 22 30 35 42 43 45 47 60 66 74 76 80 81 92 97 100 104 106 107 113 116 117 121 125 127 129 133 138 145 156 158 162 165 169 177 178 179 182 185 189 191 195 205 208 212 216 221 222 223 228 229 231 233 237 238 239 252 254 258 259 26 COLORS CONTROL OF CO
Clostripain	9	4 5 15 53 119 139 201 211 273
Enterokinase	1	248
Formic acid	12	41 55 62 84 96 134 164 199 217 230 245 267
Glutamyl endopeptidase	17	14 24 36 39 71 78 88 93 118 124 186 206 213 218 242 246 247
lodosobenzoic acid	6	35 106 116 170 208 216
LysC	24	23 31 32 33 54 59 61 77 90 91 114 135 141 142 209 210 240 241 248 250 251 262 271 274
LysN	24	22 30 31 32 53 58 60 76 89 90 113 134 140 141 208 209 239 240 247 249 250 261 270 273
NTCB (2-nitro-5-thiocyanobenzoic acid)	1	179
Pepsin (pH1.3)	59	9 10 18 29 30 41 42 46 59 60 65 66 73 74 80 91 96 97 99 100 102 103 106 107 112 113 117 120 124 125 145 157 158 168 176 177 178 179 181 182 184 189 204 205 220 222 227 228 229 230 231 232 233 236 237 238 251 254 259
Pepsin (pH>2)	82	9 10 18 19 20 29 30 41 42 43 46 59 60 65 66 68 73 74 75 76 80 91 96 97 99 100 102 103 105 106 107 112 113 115 117 120 124 125 126 127 128 129 132 133 145 155 156 157 158 168 170 176 177 178 179 181 182 184 189 190 191 204 205 207 208 215 216 220 222 227 228 229 230 231 232 233 236 237 238 251 254 259
Proteinase K	142	2 6 7 8 9 10 11 14 16 18 20 21 24 25 26 27 28 29 30 35 36 37 38 39 42 43 44 47 50 51 56 57 60 64 66 68 70 71 73 74 75 76 78 81 85 86 87 88 92 93 94 95 97 98 99 100 102 104 106 107 109 111 112 113 116 117 118 120 121 122 124 125 126 127 128 129 130 131 133 138 143 144 145 147 148 149 156 158 161 167 168 169 170 172 176 177 179 182 184 185 186 189 190 191 193 196 198 200 202 204 205 206 208 212 213 215 216 218 219 221 222 223 224 228 229 231 233 235 237 238 242 243 246 247 252 254 256 260 264 266 270 272
Staphylococcal peptidase I	16	14 24 36 39 71 78 88 93 118 124 186 206 213 218 242 246
Thermolysin	90	1 5 6 7 8 9 10 17 20 21 25 26 27 28 29 37 43 44 46 49 50 59 63 65 69 72 73 74 80 85 86 91 94 97 98 99 103 106 110 111 112 116 119 120 121 125 129 130 131 137 142 143 144 146 154 157 160 166 167 168 171 175 176 178 181 183 184 188 192 197 201 203 204 211 214 220 222 227 228 232 234 236 237 238 251 253 255 259 269 271
Trypsin	33	4 5 15 23 31 32 33 53 54 59 61 77 90 91 114 119 135 139 141 142 201 209 210 211 240 241 248 250 251 262 271 273 274

These chosen enzymes do not cut:

Caspase10

The enzyme(s) that you have chosen:

Trypsin

You have chosen to display all possible cleaving enzymes.

These enzymes cleave the sequence:

Name of enzyme No	o. of cleavage:	Positions of cleavage sites	
Trypsin	33	4 5 15 23 31 32 33 53 54 59 61 77 90 91 114 119 135 139 141 142 201 209 210 211 240 241 248 250 251 262 271 273 274	

These are the cleavage sites of the chosen enzymes and chemicals mapped onto the entered protein sequence:

• You have chosen a block size of 60 for the map.

or selection of some

- · Please note that the cleavage occurs at the right side (C-terminal direction) of the marked amino acid.
- . You have the possibility to display the results of a single enzyme by mouseclicking on the respective enzyme name in the map.

EXPASY Bioinformatics Resource Portal	PeptideCutter	Home Contact
	sites cleaved by proteases or chemicals in a given protein sequence. Peptic BU_HUMAN), or accession number, AC (e.g. P04406), or an amino acid se searching for specifities?	
Perform the cleavage of the protein. Reset the fields. Please, select all available enzymes and chemicals only the following selection of enzymes and chemicals		
Please indicate the way you would like the cleavage sites to be displaced by the cleavage sites. Please select the number of amino acid within or a Table of sites, sorted alphabetically by enzyme and chemical name □ Table of sites, sorted sequentially by amino acid number	•	
Please indicate which enzymes to include in the display All enzymes and chemicals Enzymes and chemicals cleaving exactly times Enzymes and chemicals cleaving at least times, and at most	times	

[*] NOTE: Proline-endopeptidase was reported to cleave only substrates whose sequences do not exceed 30 amino acids. An unusual beta-propeller domain regulates proteolysis: see Fulop et al., 1998.

You have chosen to display only those enzymes that cleave exactly 1 times. However, the following enzymes also cleave but not with the selected frequency:

Staphylococcal peptidase I, Pepsin (pH.2), GNBr, Pepsin (pH>2), Asp-N endopeptidase, Asp-N endopeptidase + N-terminal Glu, Formic acid, Iodosobenzoic acid, Arg-C proteinase, Thermolysin, Trypsin, Clostripain, Proteinase K, Chymotrypsin-high specificity (C-term to [FYW], not before P), Chymotrypsin-low specificity (C-term to [FYWML], not before P), LysC, BNPS-Skatole, LysN,

These enzymes cleave the sequence:

Name of enzyme	No. of cleavages	Positions of cleavage sites
Enterokinase	1	248
NTCB (2-nitro-5-thiocyanobenzoic acid)	1	179

At these positions the following enzymes cleave:

- Please note that the size of the peptides are calculated as if all chosen enzymes were present during digestion. If you want to obtain the size of the peptides resulting from the cleavage of only one enzyme, please, deselect the others.
- Please be aware of the fact that the present version of the PeptideCutter program does not take into consideration any kind of **modification** neither of the protein sequence nor of modifications evoked by the cleavage. Mass computations are based on **average masses** of the occurring amino acid residues, and giving peptide masses as [M]. If you want to select different parameters, we recommend to use **PeptideMass**.

Position of cleavage site	Name of cleaving enzyme(s)	Resulting peptide sequence (see explanations)	Peptide length [aa]	Peptide mass [Da]
179	NTCB (2-nitro-5- thiocyanobenzoic acid)	${\tt MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKLKDPANFQYPAESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAAMYDKGPFRSKKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFARDER STANDARD ST$	179	19997.201
248		CGFQVLEPQLTYSIGHTPADARIQILEGWKKRLENIWDETPLYFAPSSLFDLNFQAGFL MKKEVQDEEK	69	8032.136
274	end of sequence	NKKFGLSVGHHLGKSIPTDNQIKARK	26	2874.342

These are the cleavage sites of the chosen enzymes and chemicals mapped onto the entered protein sequence:

- . You have chosen a block size of 60 for the map.
- · Please note that the cleavage occurs at the right side (C-terminal direction) of the marked amino acid.
- You have the possibility to display the results of a single enzyme by mouseclicking on the respective enzyme name in the map.

MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKL

SIB Bioinformatics Resource Portal	PeptideCutte	Home Contact
PeptideCutter		
PeptideCutter [references / documentation] predicts poten	tial cleavage sites cleaved by proteases or chemicals in a given protein sequence. Per	stideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of cleavage site positions.
Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifie	the longest fragment after diges:	
lease, select		
all available enzymes and chemicals only the following selection of enzymes and c	hemicals	
☐ Arg-C proteinase	☐ Asp-N endopeptidase	☐ Asp-N endopeptidase + N-terminal Glu
☐ BNPS-Skatole	☐ Caspase1	□ Caspase2
□ Caspase3	☐ Caspase4	□ Caspase5
Please indicate the way you would like the ✓ Map of cleavage sites. Please select the nu ✓ Table of sites, sorted alphabetically by enzy ✓ Table of sites, sorted sequentially by amino	umber of amino acid within one block: 60 ✔ yme and chemical name	
☐ Pepsin (pH1.3)	☐ Pepsin (pH>2)	☐ Proline-endopeptidase
□ Pepsin (pH1.3)□ Proteinase K	□ Pepsin (pH>2)□ Staphylococcal peptidase I	 □ Proline-endopeptidase □ Tobacco etch virus protease

Name of enzyme N	lo. of cleavages	Positions of cleavage sites
Trypsin	33	4 5 15 23 31 32 33 53 54 59 61 77 90 91 114 119 135 139 141 142 201 209 210 211 240 241 248 250 251 262 271 273 274

At these positions the following enzymes cleave:

- Please note that the size of the peptides are calculated as if all chosen enzymes were present during digestion. If you want to obtain the size of the peptides resulting from the cleavage of only one enzyme, please, deselect the others.
- Please be aware of the fact that the present version of the PeptideCutter program does not take into consideration any kind of **modification** neither of the protein sequence nor of modifications evoked by the cleavage. Mass computations are based on **average mass** of the occurring amino acid residues, and giving peptide masses as [M]. If you want to select different parameters, we recommend to use **PeptideMass**.

Position of cleavage site	Name of cleaving enzyme(s)	Resulting peptide sequence (see explanations)	Peptide length [aa]	Peptide mass [Da]
4	Trypsin	MVGR	4	461.580
5	Trypsin	R	1	174.203
15	Trypsin	ALIVLAHSER	10	1108.306
23	Trypsin	TSFNYAMK	8	961.100
31	Trypsin	EAAAAALK	8	743.858
32	Trypsin	K	1	146.189
33	Trypsin	K	1	146.189
53	Trypsin	GWEVVESDLYAMNFNPIISR	20	2340.636
54	Trypsin	K	1	146.189
59	Trypsin	DITGK	5	532.594
61	Trypsin	LK	2	259.349
77	Trypsin	DPANFQYPAESVLAYK	16	1812.997
90	Trypsin	EGHLSPDIVAEQK	13	1422.558
91	Trypsin	K	1	146.189
114	Trypsin	LEAADLVIFQFPLQWFGVPAILK	23	2616.141
119	Trypsin	GWFER	5	693.760
135	Trypsin	VFIGEFAYTYAAMYDK	16	1889.153
139	Trypsin	GPFR	4	475.548
141	Trypsin	SK	2	233.268
142	Trypsin	K	1	146.189
201	Trypsin	AVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYS	59	6287.190
209	Trypsin	IQILEGWK	8	986.179
210	Trypsin	K	1	146.189
211	Trypsin	R	1	174.203
240	Trypsin	LENIWDETPLYFAPSSLFDLNFQAGFLMK	29	3407.885
241	Trypsin	K	1	146.189
248	Trypsin	EVQDEEK	7	875.888
250	T:	1992		000.000

Try PeptideCutter

Analyze your sequence

How many times is your sequence cut by trypsin (HW3)

How long is the longest product after trypsin digest?

Is there any enzyme that cuts just once?

"Protein bioinformatics II"

Retrieving protein sequences from databases (Uniprot: FASTA formate)

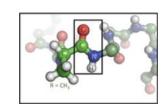
Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters (SMS)

Prediction of proteases cutting (PeptideCutter)

Predicting elements of protein secondary structure, signal peptide, transmembrane helix

► Finding 3-D structure and the domain organization of proteins

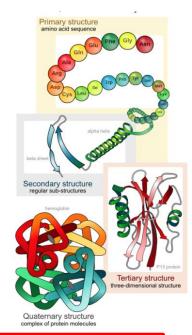
Finding all proteins that share a similar sequence and Classifying proteins into families


Finding evolutionary relationships between proteins, drawing proteins' family trees

Computing the optimal alignment between two or more protein sequences

• • •

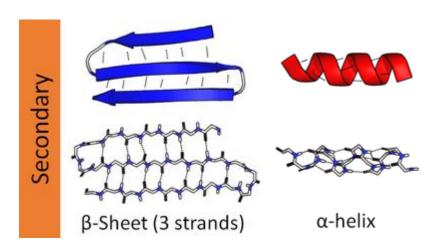
$$\begin{bmatrix} -N - C & -C - N - C & -C -$$

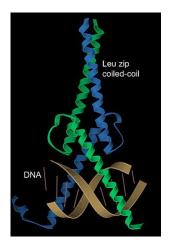

Proteins

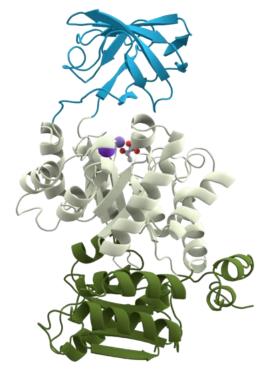
20 Aminoacids – primary structure:

(Frederick Sanger-1958 Nobel prize for insulin sequencing)

Secondary structure Tertiary structure Quaternary structure

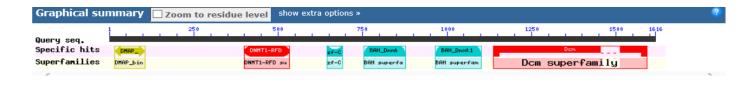

1-letter code	3-letter code	Amino acid	Possible codons
CODE A B C D E F G H I K N P Q R S T V W X	Ala Asx Cys Asp Glu Phe Gly His Ile Lys Leu Met	Alanine Asparagine or Aspartic acid Cysteine Aspartic acid Glutamic acid Phenylalanine Glycine Histidine Isoleucine Lysine Leucine Methionine Asparagine Proline Glutamine Glutamine Arginine Serine Threonine Valine Tryptophan Stop codon	GCA, GCC, GCG, GCT AAC, AAT, GAC, GAT TGC, TGT GAC, GAT GAA, GAG TTC, TTT GGA, GGC, GGG, GGT CAC, CAT ATA, ATC, ATT AAA, AAG CTA, CTC, CTG, CTT, TTA, TTG ATG AAC, AAT CCA, CCC, CCG, CCT CAA, CAG AGA, AGG, CGA, CGC, CGG, CGT AGC, AGT, TCA, TCC, TCG, TCT ACA, ACC, ACG, ACT GTA, GTC, GTG, GTT TGG TAA, TAG, TGA
Ϋ́	Tyr Glx	Tyrosine Glutamine or Glutamic acid	TAC, TAT CAA, CAG, GAA, GAG


Protein domain


region of a protein's polypeptide chain that folds independently from the rest

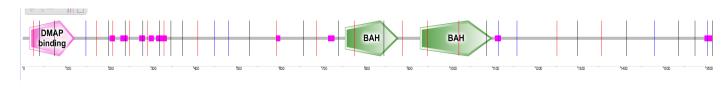
Tertiary

- forms a compact folded three-dimensional structure
- many proteins consist of several domains



Conserved domain search

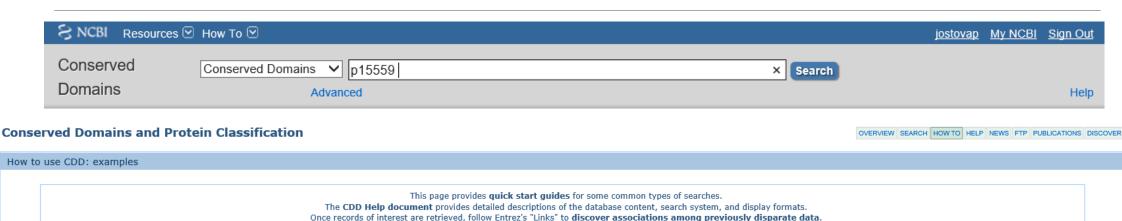
SEQUENCE⇒STRUCTURE⇒FUNCTION


Conserved domain databases:

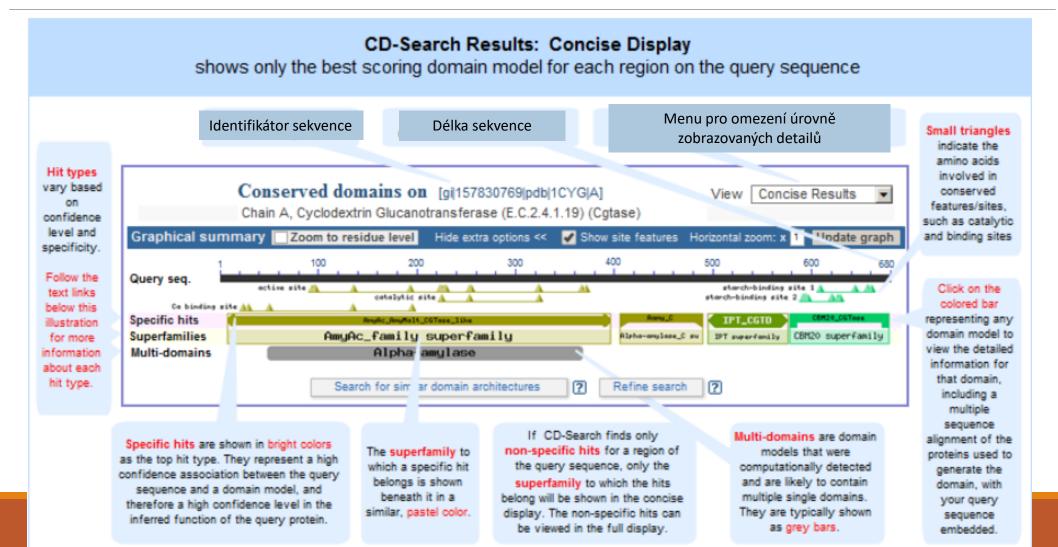
NCBI/CDD

SMART

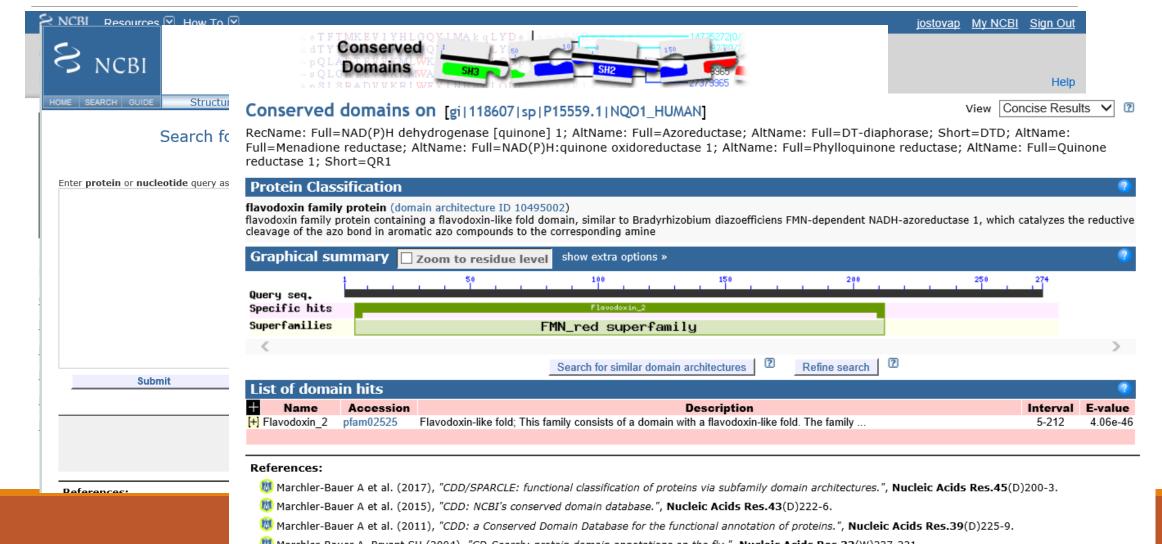
EMBL/InterPro


Domains and repeats

Pfam



Conserved domain search - CD (NCBI)

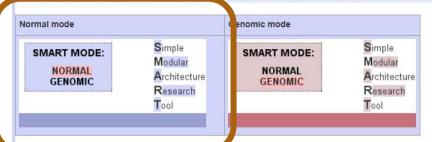


- Identify the putative function of a protein sequence.
- Identify a protein's classification based on domain architecture.
- Identify the specific amino acids in a protein sequence that are putatively involved in functions such as binding or catalysis, as mapped from conserved domain annotations to the query sequence.
- · View a protein query sequence embedded within the multiple sequence alignment of a domain model.
- Interactively view the 3D structure of a conserved domain.
- Find other proteins with similar domain architecture.
- . Interactively view the phylogenetic sequence tree for a conserved domain model of interest, with or without a guery sequence embedded.

Conserved domain search - CD (NCBI)

Conserved domain search / NQO1

SMART MODE: NORMAL GENOMIC S imple M odular A rchitecture R esearch T ool


keywords...
Search SMART

Select your default SMART mode

You can use SMART in two different modes: **normal** or **genomic**. The main difference is in the underlying protein database used. In **Normal SMART**, the database contains Swiss-Prot, SP-TrEMBL and stable Ensembl proteomes. In **Genomic SMART**, only the proteomes of completely sequenced genomes used; Ensembl for metazoans and Swiss-Prot for the rest. The complete list of genomes in Genomic SMART is available here.

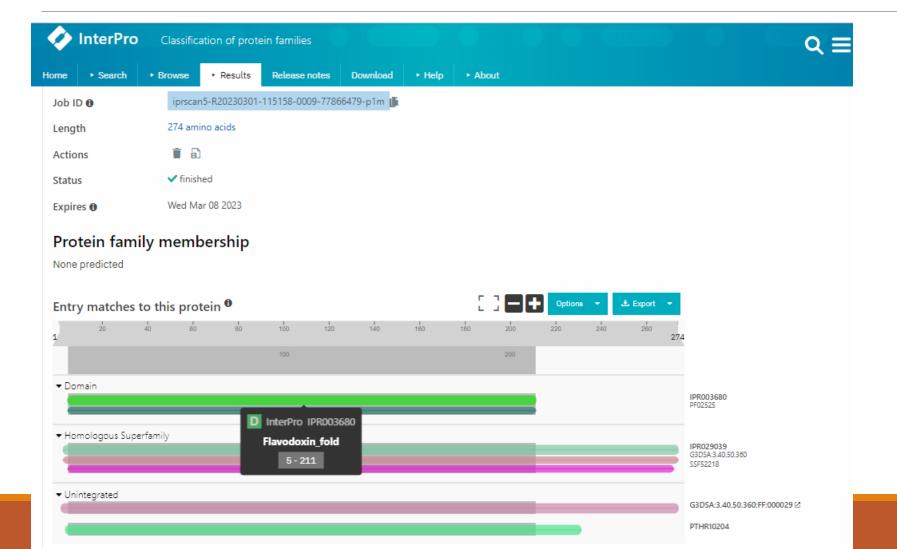
The protein database in Normal SMART has significant redundancy, even though identical proteins are removed. If you use SMART to explore domain annotation page be more accurate, and there will not be many protein fragments corresponding to the same gene in the architecture query results. Remember you are exploring a limited set of genomes, though.

Different color schemes are used to easily identify the mode you're in.

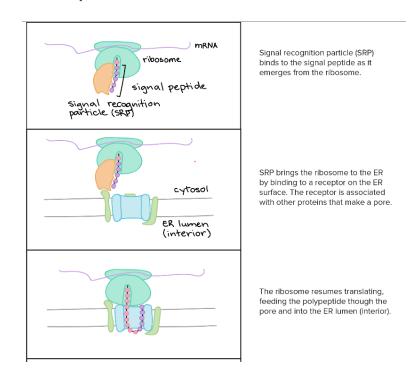
Click on the images above to select your default mode.

Information about your selected mode is stored in a browser cookie. If you for whatever reason don't want/can't use cookies, access SMART through this page.

You can easily change modes later, by clicking on the links in the 'SMART MODE' header box, or in your personal preference settings ('SETUP' link in the menu):



Conserved domain search - InterPro


Practical part

Try CD / SMART/ InterPro search

Find domains in your sequnce

ER signal peptide prediction

Endoplasmic reticulum signal peptide: 15-60 amino acids on protein N-terminus

https://www.khanacademy.org/science/biology/gene-expression-central-dogma#central-dogma-transcription

Signal peptides

SignalP

DTU Health Tech

Research Publications Education Collaboration Services and Products News About

Behind the Paper: Check out the blog post about the SignalP 6.0 publication in the Nature Portfolio Bioengineering Community.

History paper: Click here to read "A Brief History of Protein Sorting Prediction", The Protein Journal, 2019

Eukaryotic proteins: Remember, the presence or absence of a signal peptide is not the whole story about the localization of a protein! If you want to find out more about the sorting of your eukaryotic proteins, try the protein subcellular localization predictor <u>DeepLoc</u>. You may also want to check whether proteins with signal peptides have GPI anchors that keep them attached to the outer face of the plasma membrane using the predictor <u>NetGPI</u>.

Submission Instructions Data Article abstract FAQ Version history Portable Downloads
--

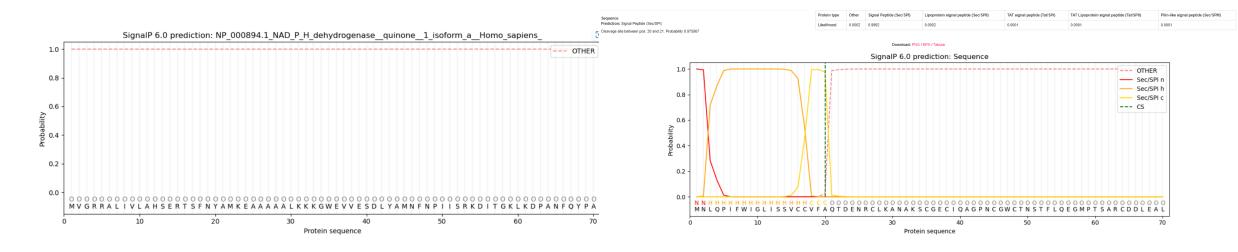
Submit data

Sequence submission: paste the sequence(s) and/or upload a local file

Protein sequences should be not less than 10 amino acids. The maximum number of proteins is 5000. The long output format might timeout for more than 100 entries.

Mirror Use SignalP 6.0 on BioLib if this server is heavily loaded.

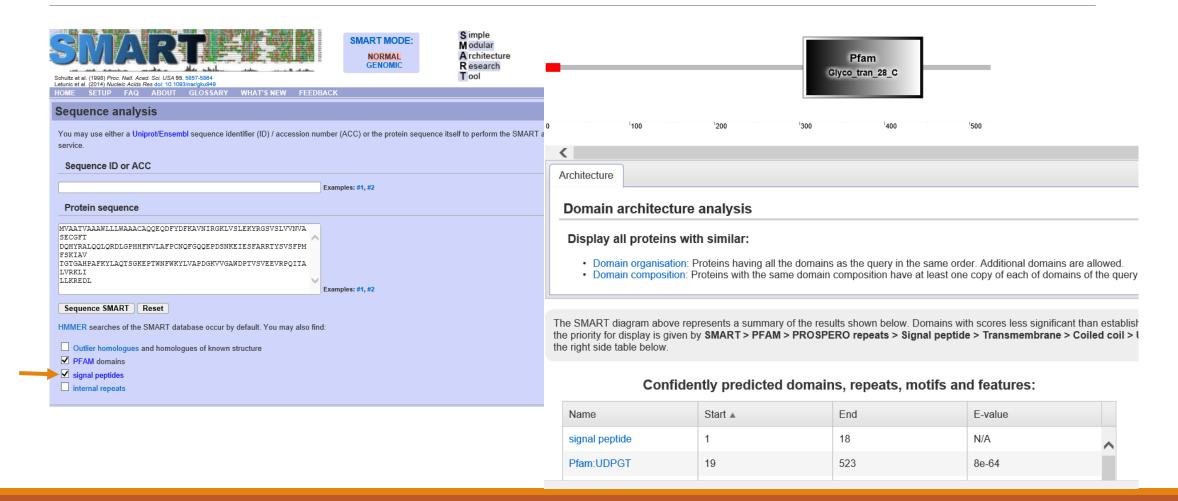
>NP_000894.1 NAD(P)H dehydrogenase [quinone] 1 isoform a [Homo sapiens] MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKLK DPANFQYPA


ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAAMY

KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPADARIQI II FGWKK

RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVQDEEKNKKFGLSVGHHLGKSIPTDNQIK ARK

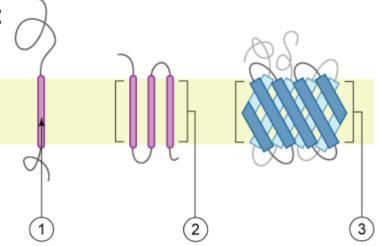
Signal peptides

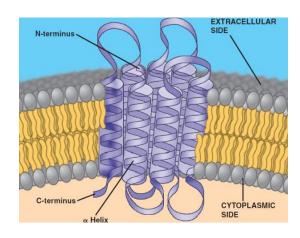

SignalP

protein does not have signal peptide

Protein **has** signal peptide (with certain probability)

Signal peptides

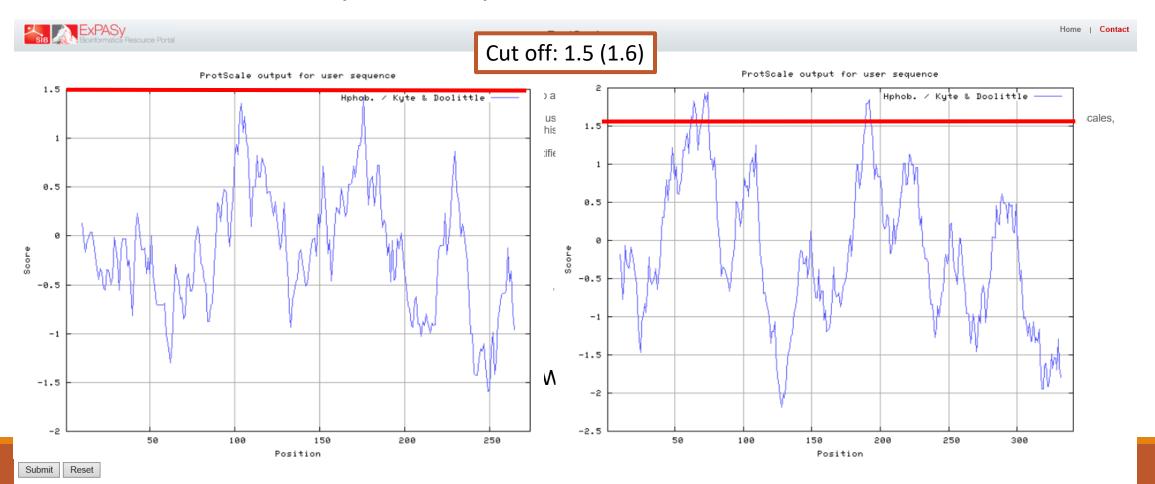



Practical part

search for signal peptide in your sequnce

Prediction of transmembrane helices

Transmembrane proteins:



Amino acid Hydrofobicity


- various programs different alghoritms different results
- Topological predictions (estimation of in and out topology)

Prediction of transmembrane helices

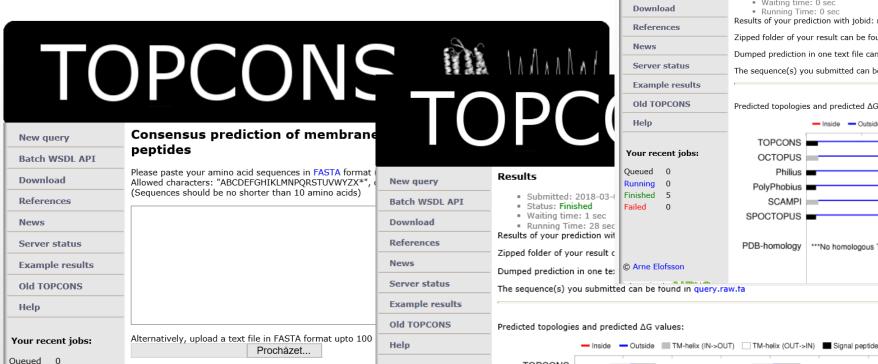
Profile of amino acids hydrofobicity

TMHMM

TOPCONS

Job name (optional):

Submit


Email (recommended for batch submissions):

Force run (do not use cached results):

Clear

Finished Failed

© Arne Elofsson

Generate example input

TOPCONS

OCTOPUS

PolyPhobius

SCAMPI SPOCTOPUS

Your recent jobs:

Queued Running

Finished 25

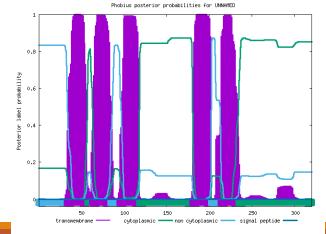
TOPCONS Results New guery Submitted: 2018-03-05 15:59:14 Batch WSDL API · Status: Finished · Waiting time: 0 sec Download · Running Time: 0 sec Results of your prediction with jobid: rst_BKOIKK References Zipped folder of your result can be found in rst BKOlKK.zip News Dumped prediction in one text file can be found in query.result.txt Server status The sequence(s) you submitted can be found in query.raw.fa Example results **Old TOPCONS** Predicted topologies and predicted ΔG values: Inside — Outside ■ TM-helix (IN->OUT) ■ TM-helix (OUT->IN) ■ Signal peptide **TOPCONS** Your recent jobs: OCTOPUS = Queued 0 PolyPhobius | Finished 5 SCAMPI SPOCTOPUS I PDB-homology ***No homologous TM proteins detected***

15

Phobius

Phobius

A combined transmembrane topology and signal peptide predictor


Phobius prediction

Prediction of UNNAMED

TOPO_DOM

235 320

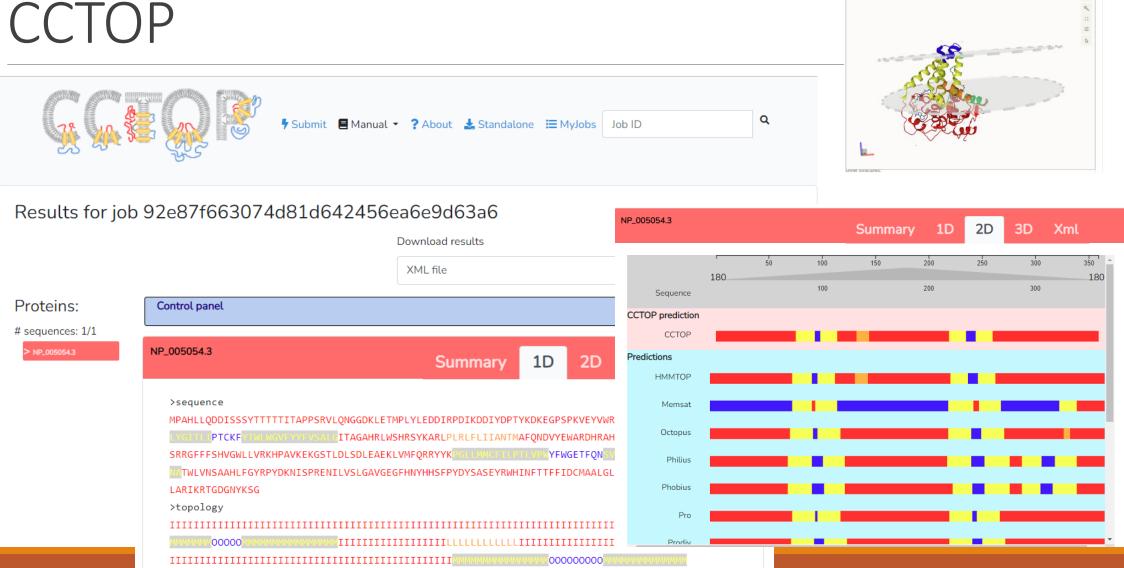
TOPO_DOM NON CYTOPLASMIC. 57 63 84 95 118 180 202 213 234 CYTOPLASMIC. TOPO_DOM TRANSMEM TOPO_DOM NON CYTOPLASMIC. TRANSMEM TOPO_DOM CYTOPLASMIC. TRANSMEM TOPO_DOM NON CYTOPLASMIC. TRANSMEM 214

CYTOPLASMIC.

The probability data used in the plot is found here, and the gnuplot script is here

Normal prediction

Paste your protein sequence here in Fasta format:



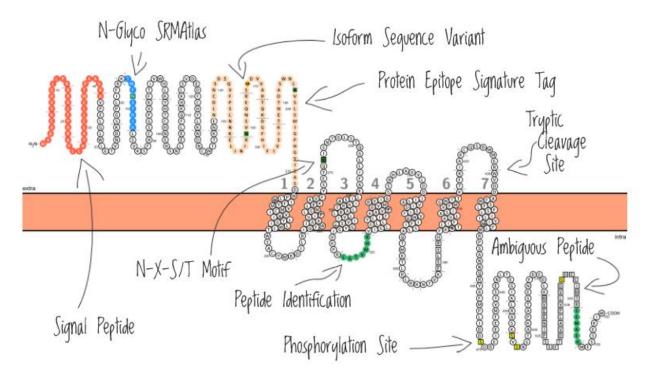
Or: Select the sequence file you wish to use | Zvolit soubor | Nevybrán žádný soubor

Select output format:

- Short
- O Long without Graphics
- Long with Graphics

Odeslat Resetovat

IIIIIIIIIIIIII

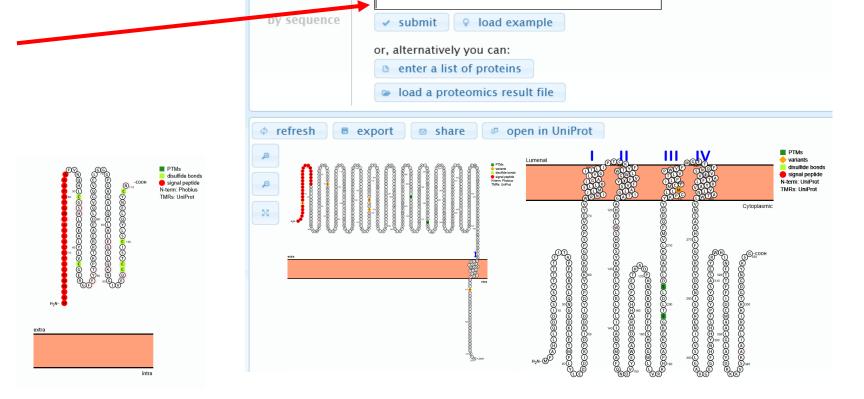

Summary 1D 2D 3D

PROTTER-figure!

-creates figure from the UniProt data

Welcome to Protter — the open-source tool for visualization of proteoforms and interactive integration of annotated and predicted sequence features together with experimental proteomic evidence!

PROTTER-figure!


-creates figure from the UniProt data

-uses UniProt ID:

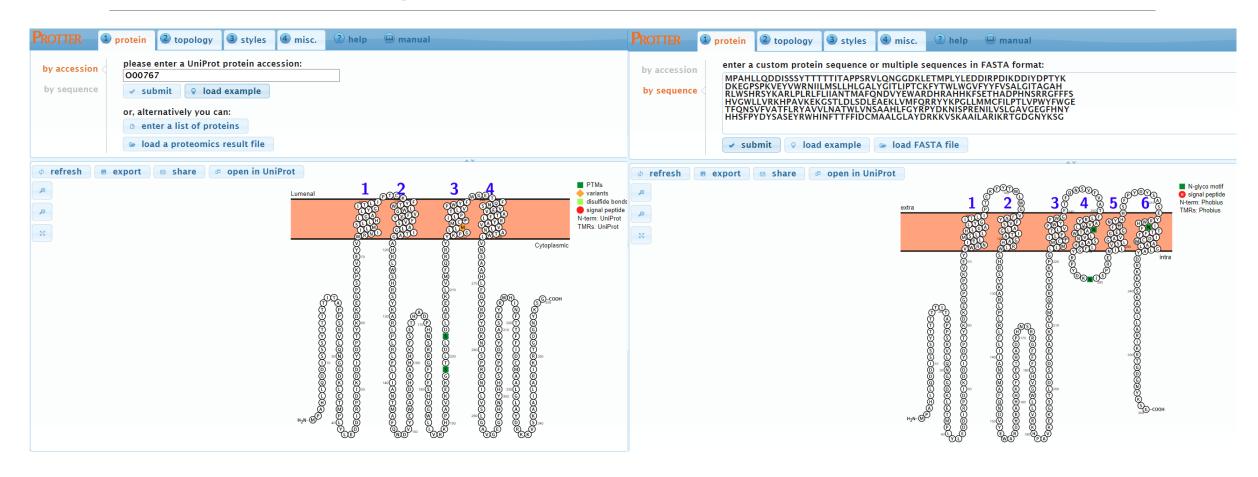
UGT1A6 (P19224)

Desaturase (O00767)

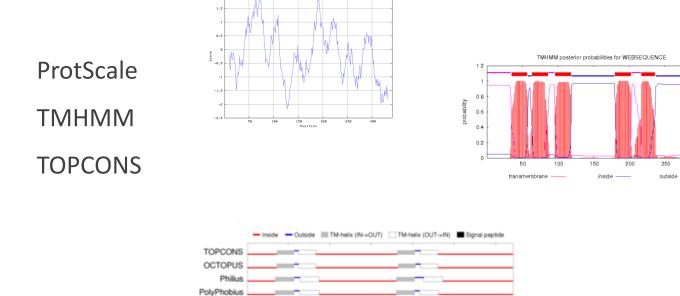
(prepro) insulin (P01308)

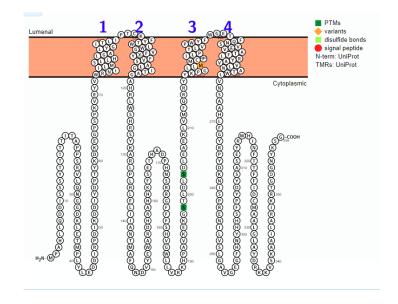
2 topology 3 styles 4 misc.

please enter a UniProt protein accession:


? help

manual


1 protein


by accession

PROTTER-figure!

Prediction of transmembrane helices

> Always try more programs!

Practical part

Try more programs.

Does your sequence have any TMHs? and/or signal peptide?

"Protein bioinformatics I"

Retrieving protein sequences from databases (Uniprot: FASTA formate)

Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters (SMS)

Prediction of proteases cutting (PeptideCutter)

Predicting elements of protein secondary structure, signal peptide, transmembrane helix

Finding 3-D structure and the domain organization of proteins

Finding all proteins that share a similar sequence and Classifying proteins into families

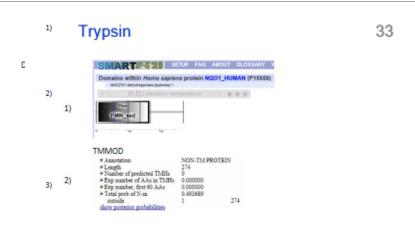
Finding evolutionary relationships between proteins, drawing proteins' family trees

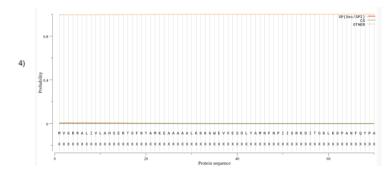
Computing the optimal alignment between two or more protein sequences

• • •

Homework 3

- 1) How many times will be the whole sequence cut by trypsin?
- 2) Does your sequence have a typical domain?
- 3) Does your sequence have transmembrane helix?
- 4) Does your sequence have a signal peptide (ER retention signal)?


E.g use "výstřižky"



"snipping tool"

- Compile in "one note" (or word, or pdf)
- ➤ Submit via Moodle

Homework 3 - example

