DÚ1:Literární rešerše – vyhledat informace k zadanému genu/proteinu/enzymu

1) Zjistěte, co znamená zkratka

Zadaný protein: **TNFa** = tumor necrosis factor alpha (někdy označován jako kachektin; homotrimerický protein o 157 AMK; rodina cytokinů)

2) Vyhledejte 5 relevantních zdrojů o tomto enzymu

- alespoň jedno review
- alespoň jeden článek z roku 2017
- 1 článek starší než rok 2000

Používaná databáze k vyhledávání = PubMed. Využití filtrů na levé straně webu.

Journal Articles 1: Huang J, Ning N, Zhang W. Effects of paraguat on IL-6 and TNF-α in macrophages. Exp Ther Med. 2019 Mar;17(3):1783-1789. doi: 10.3892/etm.2018.7099. Epub 2018 Dec 14. PubMed PMID: 30783450; PubMed Central PMCID: PMC6364147. Related citations 2: Ming H, Tian A, Liu B, Hu Y, Liu C, Chen R, Cheng L. Inflammatory cytokines tumor necrosis factor-a, interleukin-8 and sleep monitoring in patients with obstructive sleep apnea syndrome. Exp Ther Med. 2019 Mar; 17(3): 1766-1770. doi: 10.3892/etm.2018.7110. Epub 2018 Dec 18. PubMed PMID: 30783447; PubMed Central PMCID: PMC6364239. Related citations 3: Duo Y, He H, Zhang J, Ou Y, Fan Ν. Changes in serum TNF-α, IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge, Compr Psychiatry. 2019 Feb 8;90:82-87. doi: 10.1016/j.comppsych.2019.01.003. [Epub ahead of print] PubMed PMID: 30782515. Related citations 4: Ciebiera M, Włodarczyk M, Zgliczyńska M, Łukaszuk K, Męczekalski B, Kobierzycki C, Łoziński T, Jakiel G. The Role of Tumor Necrosis Factor a in the Biology of Uterine Fibroids and the Related Symptoms, Int J Mol Sci. 2018 Dec 4;19(12). pii: E3869. doi: review 10.3390/ijms19123869. Review. PubMed PMID: 30518097; PubMed Central PMCID: PMC6321234. Free full text Related citations 5: Tryer AD, Jacoby DB, Wicher SA. Protective Role of Eosinophils and TNFa after Ozone Inhalation. Res Rep Health Eff Inst. 2017 Mar;(191):1-41. PubMed PMID: 29659241. 2017 Related citations 6: 🔲 Maugeri D, Russo MS, Franzé C, Motta V, Motta M, Destro G, Speciale S, Santangelo A, Panebianco P, Malaguarnera M. starší Correlations between C-reactive protein, interleukin-6, tumor necrosis factor-alpha and body mass index during senile osteoporosis. Arch Gerontol Geriatr. 1998 Sep-Oct;27(2):159-63. PubMed PMID: 18653160. než 2000 Cited in PMC Related citations

3) založte si WEB Endnote účet a importujte tyto zdroje do seznamu "My references"

My References		copy	To Quick List Delete
All My References (6)	Author	Year	Title
[Unfiled] (5) Quick List (0) Trash (1) Empty ▼ My Groups New Group (0)	Maugeri, D.	1998	Correlations between C-reactive protein, interleukin-6, tumor necrosis factor-alpha and body mass index during senile osteoporosis Arch Gerontol Geriatr Added to Library: 22 Feb 2019 Last Updated: 22 Feb 2019
New Group (0) TRACK YOUR CITATIONS Claim your researcher D	Fryer, A. D.	2017	Protective Role of Eosinophils and TNFa after Ozone Inhalation Res Rep Health Eff Inst Added to Library: 22 Feb 2019 Last Updated: 22 Feb 2019
profile on Publons	Ciebiera, M.	2018	The Role of Tumor Necrosis Factor alpha in the Biology of Uterine Fibroids and the Related Symptoms Int J Mol Sci Added to Library: 22 Feb 2019 Last Updated: 22 Feb 2019
	🔲 Huang, J.	2019	Effects of paraquat on IL-6 and TNF-alpha in macrophages Exp Ther Med Added to Library: 22 Feb 2019 Last Updated: 22 Feb 2019
	🗌 Luo, Y.	2019	Changes in serum TNF-alpha, IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge Compr Psychiatry Added to Library: 22 Feb 2019 Last Updated: 22 Feb 2019
	Ming, H.	2019	Inflammatory cytokines tumor necrosis factor-alpha, interleukin-8 and sleep monitoring in patients with obstructiv sleep apnea syndrome Exp Ther Med Added to Library: 22 Feb 2019 Last Updated: 22 Feb 2019
	Show 10 per page $ \lor $		I≪ ≪ Page 1 of 1 Go ► ►

4) Zjistěte H-index vašeho oblíbeného profesora z FaF

Hledání Hirschova indexu skrze databázi Scopus. Lze najít další možné informace o publikační činnosti a citovanosti autora.

DÚ2: Vyhledávání proteinů - pracujte s "vaším" genem/proteinem/enzymem

1) Vyhledejte NCBI a UniProt přístupové kódy vašeho proteinu

DÚ 3: Analýza proteinů, podobnost

1) Obsahuje váš protein nějaké typické motivy?

Ano, obsahuje.

NCBI/CD

Protein	Classificati	on		2
TNF doma TNF domai	ain-containing in-containing pro	protein (domain architecture ID 10446394) tein		
Graphi	cal summary	Zoom to residue level show extra options »		?
Query se	eq. 1	25 59 75 199 125 159 175 299 225 3	233	
0		receptor binding site		
Spec1110	: NICS	The state of the s		
Superfam	nilies	TNF superfamily		
<				>
		Search for similar domain architectures 2 Refine search 2		
List of	domain hits			?
Name	Accession	Description Int	erval	E-value
[+] TNF	pfam00229	TNF(tumor Necrosis Factor) family; 10	3-233	2.99e-53

ScanProsite

Upper case represents match positions, lower case insert positions, and the '' symbol represents deletions relative to the matching profile.

SMART

Domains		no sapien:	sprotein	INFA		P01375)		
Tumor ne	ecrosis factor							
+ = -	Introns SA	VE	_					
		INF						
I	100	200						
Information	Architecture	Interactions	Pathways	PTMs	Orthology			
Length	233 aa							
Source database	UniProt							
	TNFA_HUMAN ENSP000003	NFA, HUMAN, P01375, ENSP00003384492,2, ENSP00000388492, ENSP00000388698,2, ENSP00000 NSP00000372888,4, ENSP0000372888, ENSP0000335290,3, ENSP0000038 A0UDJ334, G30716, GORGO, G30716, A0A1401922, HUMAN, A0A1401922, BEUGA, HUMAN, B5BL						
Identifiers	/10/10/00/00/1,							

The SMART diagram above represents a summary of the results shown below. Domains with scores less significant than plece of sequence; the priority for display is given by SMART > PFAM > PROSPERO repeats > Signal peptide > Transmem diagram are marked as 'overlap' in the right side table below.

Confidently predicted domains, repeats, motifs and feature						
	Start .	End	E-value			

Name	Start 🔺	End	E-value	
transmembrane region	35	57	N/A	^
TNF	88	233	9.43e-56	~

InterPro

Protein family membership

Tumour necrosis factor (IPR006053)

Image: Sector Sector

Homologous superfamilies

Pfam

-						
Summary						
This is the summary of UniProt entry <u>TNFA_HUMAN</u> 면 ⁷ (<u>P01375</u> 면 ⁷).						
Description: Tumor necrosis factor						
Source organism:	<u>Homo sapiens (Human)</u> 답 (NCBI taxonomy ID <u>9606</u> 战) <u>View</u> Pfam proteome data.					
Length:	233 amino acids					
Reference Proteome:	\checkmark					

Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. Thi removed from Pfam until the next Pfam data release.

Pfam domains

This image shows the arrangement of the Pfam domains that we found on this sequence. Click

Download the data used to generate the domain graphic in JSON format.

			End
disorder	n/a	13	19
transmembrane	n/a	30	55
low_complexity	n/a	30	38
disorder	n/a	85	92
Pfam	TNE	102	233

2) Je to transmembránový protein?

Ano, jedná se o transmembránový protein.

Profil hydrofobicity aminokyselin; program Expasy/ProtScale

3) Má signální peptidy?

Vizualizace programem SignalP. V proteinu TNFA nejsou přítomny signální peptidy.

>[Homo sapiens]

MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQREEFPRDLSLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRAN ALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAE SGQVYFGIIAL

>[Pan troglodytes]

MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQREEFPRDLSLISPLAQAGSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANA LLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAES GQVYFGIIAL

>[Pongo abelii]

MSTESMIRDVELAEEALPKKTGGPHGSRRCLFLSLVSFLIVAGATTLFCLLHFGVIGPQREEFPKDLSLISPLAQAVRSS SRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIA VSYQTKVNLLSAIKSPCQRETTEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINLPNYLDFAESGQVYFGIIAL

>[Piliocolobus tephrosceles]

MSTESMIRDVELAEEALPRKTAGPQGSRRCWFLSLFSFLLVAGATTLFCLLHFGVIGPQREEFPKDLPLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRA NALLANGVELTDNQLVVPSEGLYLIYSQVLFKGQGCPSNHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDF AESGQVYFGIIAL

>[Macaca mulatta]

MSTESMIRDVELAEEALPRKTAGPQGSRRCWFLSLFSFLLVAGATTLFCLLHFGVIGPQREEFPKDPSLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRA NALLANGVELTDNQLVVPSEGLYLIYSQVLFKGQGCPSNHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINLPDYLDF AESGQVYFGIIAL

>[Chlorocebus sabaeus]

MSTESMIRDVELAEEALPRKTAGPQGSRRCWFLSLFSFLLVAGATTLFCLLHFGVIGPQREEFPKDPSLFSPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRR ANALLANGVELTDNQLVVPSEGLYLIYSQVLFKGQGCPSNHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINLPDYLD FAESGQVYFGIIAL

5) Vyhledejte podobné referenční sekvence jen u Homo sapiens – kolik sekvencí bylo nalezeno?

(je třeba zaškrtnout prohledávání "Refseq" a omezit na Homo sapiens/human/)

Ó

DÚ 4: Proteinová bioinformatika III + shrnutí I

1) Porovnejte "váš" protein se "stejným" proteinem z myši – párové porovnání. Jaká je identita těchto dvou sekvencí? Proběhlo porovnání celé délky sekvence?

2) Vytvořte mnohonásobné porovnání všech sekvencí z minulého úkolu (DÚ3) + vystřihněte "evoluční strom"

Clustal Omega

CLUSTAL 0(1.2.4) multiple sequence alignment

[Mus [Piliocolobus [Macaca [Chlorocebus [Pongo [Homo [Pan	MSTESMIRDVELAEEALPRKTAGPQ0SRRCLCLSLFSFLLVAGATTLFCLLNFGVIGPQR MSTESMIRDVELAEEALPRKTAGPQ0SRRCWFLSLFSFLLVAGATTLFCLLHFGVIGPQR MSTESMIRDVELAEEALPRKTAGPQ0SRRCWFLSLFSFLLVAGATTLFCLLHFGVIGPQR MSTESMIRDVELAEEALPRKTAGPQ0SRRCWFLSLFSFLLVAGATTLFCLLHFGVIGPQR MSTESMIRDVELAEEALPRKTGGPM6SRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQR MSTESMIRDVELAEEALPRKTGGPQ0SRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQR	60 60 60 60 60 60 60	 		[Mus 0.18412 [Piliocolobus 0.00536 [Macaca 0 ICblorgesbus 0.0043
[Mus	DEKFPNGLPLISSMAQTLTLRSSSQNSSDKPVAHVVANHQVEEQLEWLSQRANALLANGM	120			[Pongo 0.01869
[Piliocolobus	E-EFPKDLPLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGV	117			[Homo 0.00039
[Macaca	E-EFPKDPSLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGV	117			[10110 0.00030 [Dag 0.00202
[Chiorocebus	E-EFPKDPSLFSPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGV	117			[Pall 0.00595
[Pongo	E-EFPKDLSLISPLAQAVRSSSRIPSDKPVAHVVANPQAEGQLQWLNRRANALLANGV	117			
[Ron		117			
[Fail	· .** *.*. ***. ***********************	110			
[Mus [Piliocolobus [Macaca [Chlorocebus [Pongo [Homo [Pan	DLKDNQLVVPADGLYLVYSQVLFKGQGCPDY-VLLTHTVSRFAISYQEKVNLLSAVKSPC ELTDNQLVVPSEGLYLTYSQVLFKGQGCPSNHVLLTHTTSRTAVSYQTKVNLLSATKSPC ELTDNQLVVPSEGLYLTYSQVLFKGQGCPSNHVLLTHTTSRTAVSYQTKVNLLSATKSPC ELTDNQLVVPSEGLYLTYSQVLFKGQCPSNHVLLTHTTSRTAVSYQTKVNLLSATKSPC ELRDNQLVVPSEGLYLTYSQVLFKGQCPSTHVLLTHTTSRTAVSYQTKVNLLSATKSPC ELNDNQLVVPSEGLYLTYSQVLFKGQGCPSTHVLLTHTTSRTAVSYQTKVNLLSATKSPC ELNDNQLVVPSEGLYLTYSQVLFKGQGCPSTHVLLTHTTSRTAVSYQTKVNLLSATKSPC	179 177 177 177 177 177 177	0.98 0.98 0.01	Pan_troglody Homo_sapiens	Macaca_mulatta Chlorocebus_sabaeus liocolobus_tephrosceles Pongo_abelii les
[Mus	PKDTPEGAELKPWYEPIYLGGVFQLEKGDQLSAEVNLPKYLDFAESGQVYFGVIAL	235	Figure 1: Phylogenetic tree.		
[Piliocolobus	QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL	233			
[Macaca	QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINLPDYLDFAESGQVYFGIIAL	233			
[Chlorocebus	QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINLPDYLDFAESGQVYFGIIAL	233			
[Pongo	QRETTEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINLPNYLDFAESGQVYFGIIAL	233			
[Homo	QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL	233			
[Pan	QRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL	232			
	::* **** *****************************				

3) Má váš protein nějaké izoformy? Porovnejte je...

protein TNFA má jednu potenciální izoformu iolich sroupání:

jejich srovn	ium.	
<pre># Aligned_seque # 1: TNFA_HOMAN 2 : A0A1407922 # Matrix: EBLOS # Gap_penalty: # Extend_penalty # Length: 233 # Identity: # Similarity: # Gaps: # Score: 878.0 #</pre>	ences: 2 3 3 JUWAN SUM62 10.0 1y: 0.5 171/233 (73.4%) 62/233 (26.6%)	
#		
INFA_HUMAN	1 MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCL	5
A0A140T922_HU	1	
TNFA_HUMAN	51 LHFGVIGPQREEFPRDLSLISPLAQAVRSSSRTPSDKFVAHVVANPQAEG	10
A0A140T922_HU	1FPRDLSLISPLAQAVRSSSRTPSDKPVAHVVANPQAEG	3
TNFA_HUMAN	101 QLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHV	15
A0A140T922_HU	39 QLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHV	8
TNFA_HUMAN	151 LLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVF	20
A0A140T922_HU	89 LLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVF	13
TNFA_HUMAN	201 QLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL 233	
A0A140T922_HU	139 QLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL 171	

#-----

4) Byla určena 3D struktura vašeho proteinu? Vystřihněte jednu na ukázku.

Pomocí Protein Data Bank (PDB)

5) Je váš protein enzym? Jaké má enzymové číslo (EC)?

Zjištění charakteristiky proteinů/enzymů – pomocí webu Brenda. Nejedná se o enzym.

DÚ5: Vyhledávání nukleotidových sekvencí

1) Vyhledejte si vaši nukleotidovou sekvenci. Zapište si přístupový kód.

• NM_000594.4

2) Vyberte pouze kódující sekvenci (CDS), uložte formát FASTA.

							178879
ORIGIN							/gene="TNF"
1	agcagacgct	ccctcagcaa	ggacagcaga	ggaccagcta	agagggagag	aagcaactac	/gene suponum="DIF: TNF_slobs: TNFA: TNFSF2: TNLC1F"
61	agaccccccc	tgaaaacaac	cctcagacgc	cacateceet	gacaagctgc	caggcaggtt	/gene_synonym= bir; iwr-aipna; iwrA; iwrSr2; iwbSir
121	ctcttcctct	cacatactga	cccacggete	caccetetet	cccctggaaa	ggacaccatg	<pre>/note="cachectin; TNF, monocyte-derived; TNF,</pre>
181	agcactgaaa	gcatgatccg	ggacgtggag	ctggccgagg	aggegeteee	caagaagaca	macrophage-derived: APC1 protein: tumor necrosis
241	ggggggcccc	agggetecag	gcggtgcttg	ttcctcagcc	tetteteett	cctgatcgtg	France allebra TNE as the property for the line of
301	gcaggcgcca	ccacgctctt	ctgcctgctg	cactttggag	tgatcggccc	ccagagggaa	Tactor-alpha; INF-a; tumor necrosis factor ligand
361	gagttcccca	gggacctctc	tctaatcagc	cctctggccc	aggcagtcag	atcatcttct	superfamily member 2; tumor necrosis factor ligand 1F"
421	cgaaccccga	gtgacaagcc	tgtagcccat	gttgtagcaa	acceteaage	tgaggggcag	/codon_start=1
481	ctccagtggc	tgaaccgccg	ggccaatgcc	ctcctggcca	atggcgtgga	gctgagagat	/couon_starter
541	aaccagctgg	tggtgccatc	agagggcctg	tacctcatct	acteccaggt	cctcttcaag	/product="tumor necrosis factor"
601	ggccaaggct	gcccctccac	ccatgtgctc	ctcacccaca	ccatcagccg	categeegte	/protein id=" NP 000585.2 "
661	tcctaccaga	ccaaggtcaa	cctcctctct	gccatcaaga	gcccctgcca	gagggagacc	(db
721	ccagaggggg	ctgaggccaa	gccctggtat	gagcccatct	atctgggagg	ggtcttccag	/db_xre1= ccb3: <u>ccb34/02.1</u>
781	ctggagaagg	gtgaccgact	cagcgctgag	atcaatcggc	ccgactatct	cgactttgcc	/db_xref="GeneID: 7124 "
841	gagtetggge	aggtctactt	tgggatcatt	gecetgtgag	gaggacgaac	atccaacctt	/db yref="HGNC+ HGNC+11892 "
901	cccaaacgcc	teccetgece	caatcccttt	attaccccct	ccttcagaca	ccctcaacct	/ UD_AICI- HONO. HONO. HONO.
961	cttctggctc	aaaaagagaa	ttgggggctt	agggtcggaa	cccaagctta	gaactttaag	/db_xref="MIM: <u>191160</u> "
1021	caacaagacc	accacttcga	aacctgggat	tcaggaatgt	gtggcctgca	cagtgaagtg	/translation="MSTESMIRDVELAEEALPKKTGGPOGSRRCLFLSLFSFLIVAGA
1081	ctggcaacca	ctaagaattc	aaactggggc	ctccagaact	cactggggcc	tacagetttg	
1141	atccctgaca	tctggaatct	ggagaccagg	gagcetttgg	ttctggccag	aatgctgcag	11LFCLLHFGVIGFQREEFFRDLSLISFLAQAVRSSSRIPSDRFVAHVVANFQAEGQL
1201	gacttgagaa	gaceteacet	agaaattgac	acaagtggac	cttaggcctt	cctctctcca	QWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLTHTISRIA
1261	gatgtttcca	gacttccttg	agacacggag	cccagccctc	cccatggagc	cagetecete	VSYOTKVNI, SATKSPCORFTPEGAFAKPWYEDIYLCGVFOLFKGDD, SAFINDDYL
1321	tatttatgtt	tgcacttgtg	attatttatt	atttatttat	tatttattta	tttacagatg	
1381	aatgtattta	tttgggagac	cggggtatcc	tgggggaccc	aatgtaggag	ctgccttggc	DFAESGQVYFGIIAL"
1441	tcagacatgt	tttccgtgaa	aacggagctg	aacaataggc	tgttcccatg	tagccccctg	
1501	gcctctgtgc	cttcttttga	ttatgttttt	taaaatattt	atctgattaa	gttgtctaaa	
1561	caatgctgat	ttggtgacca	actgtcactc	attgctgagc	ctctgctccc	caggggagtt	Details Diaplay: EASTA ConBank Holp
1621	gtgtctgtaa	tcgccctact	attcagtggc	gagaaataaa	gtttgcttag	aaaagaaa	Display. <u>ROTA</u> Gendank Help

- 3) Na kterém chromozomu leží? Kolik má exonů? Jak je dlouhý 2. exon? Stáhněte jeho sekvenci.
 - Chromozom: 6
 - Počet exonů: 4

- 2. exon:
 >NM_000594.4:364-409 Homo sapiens tumor necrosis factor (TNF), mRNA
 TTCCCCAGGGACCTCTCTCAATCAGCCCTCTGGCCCAGGCAGTCA
- počet bp: 46 (409-364+1)
- 4) Obsahuje 2. exon nějaké "významné" SNP (GMAF > 0,01)?
 - pro daný protein není tato možnost zobrazení k dispozici

5) Kolik obsahuje 2. exon cytosinů? Kolik dinukleotidů CG?

Využití programu SMS/DNA Stats – vkládám FASTA formát sekvence 2. exonu

Pattern:	Times found:	Percentage:	tg	1	1.39
g	9	12.33	ta	1	1.39
a	11	15.07	tt	1	1.39
t	13	17.81	tc	7	9.72
с	21	28.77	tn	1	1.39
n	5	6.85	cg	0	0.00
u	1	1.37	ca	5	6.94
r	4	5.48	ct	7	9.72
у	0	0.00	cc	8	11.11
s	4	5.48	cn	0	0.00
w	0	0.00	ng	0	0.00
ĸ	0	0.00	na	1	1.39
m	4	5.48	nt	0	0.00
b	0	0.00	nc	1	1.39
d	0	0.00	nn	0	0.00

2. exon obsahuje celkem 21 cytosinů (C) a žádný CG dinukleotid.

DÚ6: Nukleotidová bioinformatika II

1) Přeložte "vaši" nukleotidovou sekvenci; ve kterém čtecím rámci se otevírá?

Překlad nukleotidové sekvence

Jedná se o překlad nukleotidové sekvence mRNA v aminokyselinovou podle genetického kódu. Volím celou sekvenci mRNA, nikoliv pouze CDS oblast. Použit program SMS/Translate.

Sequence Manipulation Suite:

Translate

SRRSLSKDSRGPAKRERSNYRPPLKTTLRRHIP*QAARQVLFLSHTDPRLHPLSPGKDTM STESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQRE EFFRDLSLISFLAQAVRSSSRTSDKPVAHVVANPQAEGQLQWLNRRANALLANGVELRD NQLVVPSEGLYLIYSQVLFKGGGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRET PEGAEARFWYEPIYLGGVFQLEKKGDRLSAEINRRDYLDFAESGQVYFGIIAL*GGRTSNL SC PKRLPCPNPFITPSFRHPQPLLAQKENWGLRVGTQA*NFKQQDHHFETWDSGMCGLHSEV LATTKNSNWGLQNSLGFTALIPDIWNLETREPLVLARMLQDLRRPHLEIDTSGP*AFLSP DVSRLP*DTEPSPHGASSLYLCLHL*LFIIYLLFIYLQMNVFIWETGVSWGTQCRSCLG SDMFSVKTELINNRLFPCSPLASVPSFDYVF*NIYLIKLSKQC*FGDQLSLIAEPLLPRGV VSVIALLFSGEK*SLLRKE

Přeložená sekvence

Zjištění čtecího rámce

Pro ověření/zjištění čtecího rámce použit program NCBI/ORFfinder. ORF = open reading frame = čtecí rámec Vkládán FASTA formát nukleotidové sekvence.

Open Reading Frame Viewer

Sequence

ORF1 (233 aa) Display ORF as Mark	Mark subse	t Mar	ked: 0	Download mark	ed set as	Protein FASTA	~
>1c1 ORF1 MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCL	Label	Strand	Frame	Start	Stop	Length (nt aa)	
LHFGVIGPQREEFPRDLSLISPLAQAVRSSSRTPSDKPV/HVVANPQAEG QLQWLNRRANALLANGVELRDNQLVVPSEGLYLIYSQVIFKGQGCPSTHV	ORF1	+	1	178	879	702 233	^
LLIHTISRIAVSYQIKVMLLSAIKSPOQRETPEGAEAK/WYEPIYLGGVF QLEKGDRLSAEINRPDYLDFAESGQVYFGIIAL	ORF4	+	2	623	1141	519 172	
	ORF2	+	1	1057	1245	189 62	
	ORF3	+	1	1378	1533	156 51	
Nejdelší úsek (oblast 178 – 879; 233 aa) se	ORF9	-	1	559	407	153 50	
otevírá ve čtecím rámci +1 (ORF1+), tzn., že se	ORF12	-	3	1151	1008	144 47	
jedná kódující vlákno dvoušroubovice, resp.	ORF15	-	3	194	57	138 45	
danou mRNA	ORF5	+	2	1262	1381	120 39	
	ORF14	-	3	578	465	114 37	
	1						

Help

2) Porovnejte celou a CDS "vaší" nukleotidové sekvence.

Myšleno porovnat celou mRNA sekvence TNF a CDS oblast mRNA sekvence TNF; porovnání v programu MultAlin **NM_000594.4** – celá mRNA sekvence, **NM_000594.4:170-879** – CDS sekvence

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
NH_000594.4 NH_000594.4:178-879 Consensus	AGCAG	ACGCTCC	CTCAGCAAGGA	CAGCAGAGGA	CCAGCTAAGA	GGGAGAGAAG	CAACTACAGA	ICCCCCCTGF	NAAACAACCCT	CAGACGCCA	CATCCCCTGAC	AGCTGCCA	GGCAGGTTCTC	ттсстст
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
NH 000594 4	1	0CTC0CC					000000000000000000000000000000000000000				00000000000	200000000	2000000000	
NH_000594.4:178-879 Consensus			••••••			ATGAGC	ACTGAAAGCE	TGATCCGGGF	ICGTGGAGCTG ICGTGGAGCTG	GCCGAGGAGGAGG	CGCTCCCCAA	SAAGACAGG	GGGGCCCCAGC	GCTCCAG
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
NH 000594.4	1	TTATTO	сстсявсстст	тетесттест	влааталтва	81181181	сестсттсте	влатлатла	BATABAAATTT	าววาวลูลวาม	199999999999	TECCEAGE	GACCICICICI	22827683
NH_000594,4:178-879 Consensus	GCGGT GCGGT	GCTTGTT	CCTCAGCCTCT CCTCAGCCTCT	ТСТССТТССТ ТСТССТТССТ	GATCGTGGCA Gatcgtggca	GGCGCCACCA GGCGCCACCA	CGCTCTTCTC	CCTGCTGCAC CCTGCTGCAC	CTTTGGAGTGA CTTTGGAGTGA	TCGGCCCCCC TCGGCCCCCC	igagggaagag igagggaagag	TTCCCCAGG TTCCCCAGG	GACCTCTCTCT GACCTCTCTCT	TAATCAGC TAATCAGC
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
NH_000594.4	CCTCT	GGCCCAG	GCAGTCAGATC	ATCTTCTCGA	ACCCCGAGTG	ACAAGCCTGT	AGCCCATGT	GTAGCAAACO	CTCAAGCTGA	GGGGCAGCT	CAGTGGCTGA	ICCGCCGGG	CCAATGCCCTC	CTGGCCA
Nn_000594,4:178-879 Consensus	CCTCT	GGCCCAG	GCAGTCAGATC	ATCTTCTCGA	ACCCCGAGTG	ACAAGCCTGT	AGCCCATGT	GTAGCAAACC	CTCAAGCTGA	IGGGGCAGCT	CAGTGGCTGA	ACCECCEEE	CCAATGCCCTC	CTGGCCA
	521	530	540	550	560	570	580	590	600	610	620	630	640	650
NH_000594.4	ATGGC	GTGGAGC	TGAGAGATAAC	CAGCTGGTGG	TECCATCAGA	GGGCCTGTAC	CTCATCTACT	CCCAGGTCCT		CAAGGCTGCO	CCTCCACCCA	IGTGCTCCT	CACCCACACCE	TCAGCCG
Consensus	ATGGC	GTGGAGC	TGAGAGATAAC	CAGCTGGTGG	TGCCATCAGA	GGGCCTGTAC	CTCATCTACT	CCCAGGTCCT	CTTCAAGGGC	CAAGGCTGCO	CCTCCACCCA	GTGCTCCT	CACCCACACCE	TCAGCCG
	651	660	670	68 0	690	700	710	720	730	740	750	760	770	780
NH_000594.4	CATCG	ссатстс	CTACCAGACCA	AGGTCAACCT	сстстствсс	ATCAAGAGCC	CCTGCCAGAG	GGAGACCCCF	IGAGGGGGCTG	AGGCCAAGCO	CTGGTATGAG	CCATCTAT	CTGGGAGGGG	CTTCCAG
NM_000594.4:178-879 Consensus	CATCG	ICCGTCTC ICCGTCTC	CTACCAGACCA CTACCAGACCA	AGGTCAACCT AGGTCAACCT	CCTCTCTGCC	ATCAAGAGCC ATCAAGAGCC	CCTGCCAGAC	iggagaccccf iggagaccccf	1GAGGGGGGCTG 1GAGGGGGGCTG	AGGCCAAGCO AGGCCAAGCO	CTGGTATGAGI CTGGTATGAGI	CCATCTAT	CTGGGAGGGGT CTGGGAGGGGT	ICTTCCAG ICTTCCAG
	781	790	800	810	820	830	840	850	860	870	880	890	900	910
NH_000594.4	CTGGA	GAAGGGT	GACCGACTCAG	CGCTGAGATC	AATCGGCCCG	ACTATCTCGA	CTTTGCCGAG	TCTGGGCAGO	TCTACTTGG	GATCATTGCO	CTGTGAGGAG	GACGAACAT	CCAACCTTCCC	AAACGCC
NM_000594,4:178-879 Consensus	CTGGA Ctgga	igaagggt Igaagggt	GACCGACTCAG Gaccgactcag	CGCTGAGATC	AATCGGCCCG	ACTATCTCGA Actatctcga	ICTTTGCCGAO	TCTGGGCAGO TCTGGGCAGO	STCTACTTTGG STCTACTTTGG	GATCATTGCO	CTGTGA Ctgtga			
	911	920	930	940	950	960	970	980	990	1000	1010	1020	1030	1040
NM_000594.4 NM_000594.4:178-879 Consensus	icccc	TGCCCCA	атссстттатт	АССССТССТ	TCAGACACCC	тсаасстстт	CTGGCTCAAF	AAGAGAATTO	GGGGCTTAGG	GTCGGAACCO	CAAGCTTAGAAO	CTTTAAGCA	ACAAGACCACC	CACTTCGA
	1041	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170
NH 000594 4		CCCOTTC	+											Ì
NH_000594.4:178-879 Consensus														
	1171	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300
NH_000594.4	I GAGCC	TTTGGTT	стаассабаят	бстбсяббас	тталалас	стсасстаба	ААТТСАСАСА	АСТОСАТО	AGGCCTTCCT	стстссяба	GTTTCCAGAC	ТССТТБАБ	ACACGGAGCCC	AGCCCTC
NM_000594,4:178-879 Consensus														
	1301	1310	1320	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430
NH_000594.4	I	GGAGCCA	GCTCCCTCTAT	TTATGTTTGC	ACTTGTGATT	+ ATTTATTATT	TATTTATTA	TTATTTATT1	ACAGATGAAT	GTATTTATT	GGGAGACCGG	GTATCCTG	GGGGACCCAAT	I Igtaggag
NH_000594,4:178-879 Consensus														
	1431	1440	1450	1460	1470	1480	1490	1500	1510	1520	1530	1540	1550	1560
NH_000594.4 NH_000594.4:178-879	Стбсс	ттөөстс	AGACATGTTT	CCGTGAAAAC	GGAGCTGAAC	AATAGGCTGT	TCCCATGTA	CCCCCTGGCC	стстатасстт	CTTTTGATT	TGTTTTTAA	ататттат	CTGATTAAGTT	GTCTAAA
LONSENSUS			•••••			•••••								•••••
	1561 	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	1678 	
NH_000594,4 NH_000594,4:178-879 Consensus	CAATG	CTGATTT	GGTGACCAACT	GTCACTCATT	GCTGAGCCTC	TGCTCCCCAG	GGGAGTTGTO	STCTGTAATCO	SCCCTACTATT	CAGTGGCGAC	SAAATAAAGTT	rgcttagaa	AAGAAA	

3) Stáhněte si neznámou sekvenci v úkolu a otevřete ji programem chromas.

FASTA formát neznámé sekvence:

>D3tm4 sequence exported from chromatogram file

4) Zkontrolujte přítomnost "vektorů" a "očištěnou" sekvenci identifikujte

Z chromasu použiji FASTA formát dané sekvence (viz výše) – projedu programem VecScreen – zjistím kontaminaci vektorem

To dál znamená vzít očištěný FASTA formát, projet ho BLASTem, najít oblast největší shody a získat její FASTA formát.

Dist	ribution of the top 10 Mouse over to se	H Blast Hits on 1 e the title, click to	00 subject seque	ences 😡 s							
<40 1	Color ke	y for alignmen 50-80 Query 300	ent scores B0-200 I 400	■>=200 500 600	Největší oblast shody dle algoritmu BL mohlo jednat o mRNA acyl CoA de housenek motýlů Manduca sexta.	AST (7 enatu	9 %) ı I rasy	nazni (d3	ačuje, BAPT	, že by : Q gen	se)
equences p elect: <u>All Ne</u> Alignment	producing signific one Selected:0 ts Download	zant alignment	ts: Graphics Dista	ince tree of results							
				Descri		Max Score	Total Score	Query Cover	E value	Per. Ident	Acce
Manduca	sexta mRNA for a	<u>cyl-CoA desatur</u>	rase (d3APTQ d	Descrij <u>jene)</u>		Max Score 830	Total Score 830	Query Cover 79%	E value 0.0	Per. Ident 97.34%	Acce
Manduca	sexta mRNA for a sexta mRNA for a	<u>cyl-CoA desatur</u> cyl-CoA desatur	rase (d3APTQ c rase (d2 gene)	Descrij <u>(ene)</u>		Max Score 830 675	Total Score 830 675	Query Cover 79% 77%	E value 0.0	Per. Ident 97.34% 92.28%	Acce <u>AM158</u> <u>AM076</u>
Manduca Manduca Expressio	<u>i sexta mRNA for a</u> i sexta mRNA for a on vector pYLGFP2	<u>cyl-CoA desatur</u> cyl-CoA desatur ? DNA, complete	rase (d3APTQ c rase (d2 gene) e seguence	Descrij 1 <u>ene)</u>		Max Score 830 675 217	Total Score 830 675 217	Query Cover 79% 77% 19%	E value 0.0 0.0 5e-52	Per. Ident 97.34% 92.28% 100.00%	Acces AM158 AM076 LC018
 Manduca Manduca Expression Expression 	I sexta mRNA for a I sexta mRNA for a on vector pYLGFP2 on vector pYLGFP2	cyl-CoA desatur cyl-CoA desatur 2 DNA, complete LDNA, complete	rase (d3APTQ c rase (d2 gene) e sequence e sequence	Descrij <u>tene)</u>		Max Score 830 675 217 217	Total Score 830 675 217 217	Query Cover 79% 77% 19%	E value 0.0 0.0 5e-52 5e-52	Per. Ident 97.34% 92.28% 100.00%	Acce: AM158; AM076; LC018; LC018;

Dál provedu srovnání očištěného FASTA formátu neznámé sekvence získané z Chromasu a nejpravděpodobnější sekvenci z BLASTu (tedy mRNA acetyl-CoA denaturasy u housenek Manduca sexta).

~ ~

CEO

E94

620

		1					+-			+				640	1
	nezn m AM158251.2	GATCO	стсатаас	GCTACTAGGGG	STTTTTCT	ATTCCCATGT	AGGTTGGTTG	TGGTAAAGA	GACACCCTGA	GGCTATTAAG	CGAGGAAAAAT	CTCTGGACATO	TCTGACATCI	ACAATAACCC	AGTTTTGA
neznámá sekvence (očištěná)	Lonsensus	651	660	670	680	690	700	710	720	730	740	750	760	770	780
· · · ·	nezn m	·		CGCCATI	ICCGTTGGT	FACTACTATC	TECCTTTETE	TCCCAACAA	тааттссаат	GTATTTTGG	GACGAAAGTTI	TAATGTTGC	TGGCACATGA	ICCATGCTGA <mark>A</mark>	атататст
	AM158251.2	AGTTO	CAGAAAAA	HATACGCCATI	ICCGTTG <mark>A</mark> T	TACTACTOTO TACTACTOTO	-GCCTTTGTG	TCCCAACAA	TAATTCCAAT	GTATTTTTGG	GACGAAAGTTI	TAATGTTGC	TGGCATATG	CCATGCTGAG	ATATATCA
Manduca sexta	conscisus	781	790	800	810	820	830	840	850	860	870	880	890	900	910
	5075 M	II	TCTCOOCCI	TECOTTICIO	CTCOOCOC	CTTCCTCOT	отстесссат	10000000000	100000000000000000000000000000000000000	010001000	000000000000000000000000000000000000000	отоссоосот	TCCCCCCT	000000000000000000000000000000000000000	1
	AM158251.2	TCAAT	CTGAACA	TATATTTCT	IGTCAACAG	GTTGCTCAT	ATGTGGGGGGT	TARACCTT	TGACAAGAAC	ATAGCTCCAA	ACAGAATTA	TATAGCAACA	TCGCCACAT	AGGCGAAGGT	TTCCACAA
	Lonsensus	ILaai	ICIGNHLa	Jachillun	16 I CHHCH6	Lattactichti	1161666661	THHHLLTIN	II GHUHHGHHUI	HINGLILLAN	HUNGHNITH	HINGCHNCH	TLULLHLHI	HUULUHHUUI	TTUCHUHH
		911	920	930	940	950	960	970	980	990	1000	1010	1020	1030	1040
	nezn n	CTACO	ATCACGC	ITTTCCTTGG	ATTATCGT	SCCTCGGAAC	TTGGAAACAA	ТАТСТТААС	TTAACGACCA	AGTTCATAGA	TTCTTCGCC	GGATTGGCT	GGCTTATGAT	TTGAAAACGG	TTCCTGAA
	Consensus	CTAC	CATCACGCI	ATTTCCTTGG	ATTATCGT	GCCTCGGAAC	TTGGAAACAA	TATCTTAAC	TTAACGACCA	AGTTCATAGA	TTCTTCGCC	I GGATTGGCT(GGCTTATGA	TTGAAAACGG	TTCCTGAA
		1041	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170
		1	+	+	+-	+-	+-	+	+	+	+	+	+	+	Ĭ
	nezn n AM158251.2	GATCI	I GCTTCAGI	1HHHGGH I GGI 1AAAGGATGGI	1GHGHHL I G 1GAGAACTGI	GTGACGGTAC	CAATCTTTGG	JUUHUUUU IU GGAGGGGTO	ATAAGAACAT	GAAAAAAGAT'	I A TG TGAAAAT(TACAGATGT	CATGAATGA	TCATGTCATG	TCAAGAAT
	Consensus	GATCI	FGCTTCAG	AAAGGATGGA	IGAGAACTG	GTGACGGTAC	CAATCTTTGG	GGAGGGGTG	ATAAGAACAT	GAAAAAAGATI	FATGTGAAATO	CTACAGATGTO	CATGAATGA	aTCaaGc	•••••
		1171	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300
	nezn n						ATGCATCT	AGAGGGCCCC	ATCATGTAAT	TAGTTATGTC	CGCTTACAT	ICACGCCCTCO	;+	+	
	AM158251.2 Consensus	GAATA	ACCCATA	ITAATTAATG	TACAGATA	TTATACTAAC	AAAGGTACAA 	AATGTAGAG Jafiggacac	GAAATAGTGTT GaaaaGTaaT	TGGGTAAGGCI TaGgTAaGgCI	AGACTATATI AGACTACATI	leaCacacTa	TAATTAGAAA	AGATACTTCT	CCCAGTAA
	00110011000	4204	4240	4200	4220	4240	4950	4200	4070	4200	4200	4.400	444.0	4 400	4 420
		1301	1310	1320	1330	1340		1360	1370	+	1390	+	1410	1420	1
	nezn m AM158251.2	ACGTE	САВТАТА	TATACAST		TAGETTTEET	ATTTAGTGGT	AGGTGCAAA	0 000000000000000000000000000000000000	CCCACATCCG TTTGCGACCT	CTCTAACCGAR ACTGACCGAR	1AAGGAAGGA(1ATAGAAGGAA		CTGATATTTA	татбатаа
	Consensus								C	cccaCaaCCg	aCTaACCGA	1AaaGAAGaAa			
		1431	1440	1450	1460	1470	1480	1490	1500	1510	1520	1530	1540	1550	1560
	Dezn B	1	+	+	+-	+-	+-	+-	+-	+	+	+		+	1
	AM158251.2	TAATA	ITCGAATTO	GAATTTTTAT	ICATTTAAT	CGCTATTTTT	TTTTTATATT	сттеттетте	TTTTATATTA	TTGCTGCCAC	CGTTTATGTG	CGATGATTT	GCCAATGTTO	agtaataatc	TCAGGTAA
	Lonsensus	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••
		1561	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	1680	1690
	NEZN M									TTAG	CAACCTGAA	TCTA			
	ni158251.2	(dH))	achailin	.comminini		INNIIILII	IUINCHUCHU	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	InnnnaHHHL II		Innini Tühhl	Incici l'ullul	anianAHCC		

DÚ7: Primery a RE analýza

1) Zjistěte, zda a kolikrát štěpí celou sekvenci vašeho genu enzymy: Xhol, BamHl, Sacl (vezmu mRNA – její FASTA formát vložím do SMS/RestrictionSummary a vyberu potřebné RE)

- Xhol (c|tcgag) neštěpí
- BamHI (g|gatcc) neštěpí
- Sacl (ccgc|gg) neštěpí

2) Navrhněte primery tak, aby se vaše kódující sekvence (CDS) dala vložit do plasmidu pUC18

Zkontrolujte, které RE budou vhodné z nabídky MCS (nebude-li možné vaší sekvenci vložit do tohoto plasmidu, navrhněte primery pro kódující oblast NQO1)

Restrikční enzymy MCS vhodné k použití: HindIII (a|agctt), PstI (ctgca|g), SalI (g|tcgac), XbaI (t|ctaga), BamHI (g|gatcc), SmaI (ccc|ggg), KpnI (ggtac|c), SacI (gagct|c), EcoRI (g|aattc)

Navrhněte F a R primer tak aby Tm nebyla větší než 65°C

(primery můžu navrhnout a jejich vlastnosti porovnat přes OligoCalc nebo Primer Blast)

• Forward primer: ATG AGC ACT GAA AGC ATG ATC (Tm = 57,5°C)

Nucleotide base codes ATG AGC ACT GAA AGC ATG ATC	м	elting Temperat	ure (T _M) Calculations
	1	50.5	°C (Basic)
Reverse Complement Strand(5' to 3') is:	2	57.5	°C (Salt Adjusted)
GAT CAT GCT TTC AGT GCT CAT	<u>3</u>	52.26	°C (Nearest Neighbor)

• **Reverse primer:** TCA CAG GGC AAT GAT CCC AA (Tm = 58,4°C)

Nucleotide base codes TTG GGA TCA TTG CCC TGT GA	M	elting Temperat	ure (T _M) Calculations
	1	51.8	°C (Basic)
	2	58.4	°C (Salt Adjusted)
Reverse Complement Strand(5' to 3') is: TCA CAG GGC AAT GAT CCC AA	<u>3</u>	52.38	°C (Nearest Neighbor)

Pokud bychom chtěli proces dokončit, je třeba k danému primeru vybrat restrikční enzym z nabízených MCS. Pro forward primer vybírám ze spodní části nabídky, pro reverse primer z části horní:

Primery – finální část:

- Forward primer: ATG AGC ACT GAA AGC ATG ATC
 - o zvolený RE: EcoRI (štěpí v místě <u>g | aattc</u>)
 - o variabilní nukleotidy: př. <u>AAA</u>
 - \circ celá sekvence: <u>AAA GAA TTC</u> ATG AGC ACT GAA AGC ATG ATC (T_m = 66,7°C)
 - \circ pokud bychom se chtěli dostat pod teplotu T_m = 65°C, pak je potřeba ubrat množství nukleotidů
 - daná sekvence primeru určená pro vklad do plasmidu: <u>AAA GAA TTC</u> ATG AGC ACT GAA AGC ATG AT (T_m = 64,6°C)
- Reverse primer: TCA CAG GGC AAT GAT CCC AA
 - zvolený RE: HindIII (štěpí v místě <u>a | agctt</u>)
 - o variabilní nukleotidy: <u>AAA</u>
 - \circ celá sekvence: <u>AAA AAG CTT</u> TCA CAG GGC AAT GAT CCC AA (Tm = 67,4°C)
 - daná sekvence primeru určená pro vklad do plasmidu: <u>AAA</u> <u>AAG</u> <u>CTT</u> TCA CAG GGC AAT GAT CC (T_m = 64,6°C)

Pokud bychom tvořili primery skrze Primer Blast, nabízelo by se několik možností primerů. V tomto případě možností TNF se nabízí 6 párů primerů. U zvolených primerů lze vidět jednotlivé charakteristiky viz obrázek.

[⊖]Detailed primer reports

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	GTGACAAGCCTGTAGCCCAT	Plus	20	431	450	60.04	55.00	6.00	2.00
Reverse primer	CAGACTCGGCAAAGTCGAGA	Minus	20	847	828	59.76	55.00	6.00	3.00
Product length	417								
product length = Forward primer : Template	417 1 GTGACAAGCCTGTAGCCCAT 20 431 450								

DÚ 8: qPCR primery, kontrola primerů

1) Navrhněte primery programem Primer3 na "váš" gen, tak aby nebyly ve vlásenkových oblastech (specifické být nutně nemusí).

Práce s programy mFOLD (program pro predikci sekundární struktury) a Primer3 (program pro navržení dvojice primerů dle zadané sekvence).

a) mFOLD – pro zobrazení vlásenkových oblastí; vkládám FASTA formát CDS sekvence "svého" genu = TNF; folding temperature = 60°C; cílem je vybrat potenciální oblast bez vlásenek, pro kterou bychom následně dokázali vytvořit adekvátní primery; se

b) Primer3 – navržení dvojice primerů

Pro daný gen nelze konstruovat primery nezasahující do vlásenkové oblasti. Pro vytvoření primeru bude forward primer zasahovat do vlásenkové oblasti a budou rozvolněna další pravidla, konkrétně poměr G/C (zvýšení maximálního limitu na 90 %), zkrácení minimální velikosti primeru (z 18 na 15 nukleotidů). Product size ranges nastavena na 50-150. Included region = oblast, ve které je vhodné mít primery, tedy nevlásenková oblast (pozn. nejedná se o číselné rozmezí prvního a posledního zvoleného nukleotidu, ale počáteční nukleotid + počet nukleotidů za ním.)

Vybrané primery **nejsou specifické** – mohly by zahrnovat amplifikaci i dalších variant, jako například: Homo sapiens DnaJ (Hsp40 member), transmembrane protein 63C (TMEM63C), sprouty related EVH1 domain containing 1 (SPRED1) a spoustu dalších.

Detailed primer reports

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	GCTGCCCCTCCACCC	Plus	15	608	622	58.78	80.00	3.00	0.00
Reverse primer	TCTGGTAGGAGACGGCG	Minus	17	670	654	57.61	64.71	4.00	3.00
Product length	63								
<u>NM_000594.4</u> Hom	o sapiens tumor necrosis factor (TN	F), mRNA							
<u>NM_000594.4</u> Hom	o sapiens tumor necrosis factor (TN	F), mRNA							
NM_000594.4 Hom	o sapiens tumor necrosis factor (TN	F), mRNA							
<u>NM_000594.4</u> Hom roduct length =	o sapiens tumor necrosis factor (TN	F), mRNA							
<u>NM_000594.4</u> Hom roduct length = orward primer 1 emplate 6	o sapiens tumor necrosis factor (TN 63 GCTGCCCCTCCACCC 15 08	F), mRNA							
NM_000594.4 Hom roduct length = orward primer 1 emplate 6	o sapiens tumor necrosis factor (TN 63 GCTGCCCCTCCACCC 15 08	F), mRNA							
NM_000594.4 Hom roduct length = orward primer 1 emplate 6 everse primer 1	o sapiens tumor necrosis factor (TN) 63 63 65 62 62 17 17 62 17	F), mRNA							

2) Zkontrolujte primery pro GAPDH z publikace (sekvence k nalezení v Supporting information 1 - u článku): MultAlin, Primer3, mFOLD, specifita?

Potřebné informace:

• sekvence:

0

- primery (zadání v 5'-3' směru):
 - forward: GGTATGTCCTTCCGTGTTCC
 - reverse: AGTTCTTCCGATAGTTCCGC (komplementárně původní řetězec: TCAAGAAGGCTATCAAGGCG)

a) MultAlin: srovnání organismu a primerů – jestli jsou opravdu vhodné pro použití v dané sekvenci, kde primery začínají

Primery odpovídají dané sekvenci; forward primer: 802-821, reverse primer: 887-906

	651	660	670	680	690	700	710	720	730	740	750	760	770	780
GAPDH forward reverse Consensus	TGCCA	TCACTGCCA	ICCCAAAAGAG	CTGTTGATGGA	ICCCTCGAGCA	AGGACTGGA	3AGGTGGCAG(GCTGCAAGC	TTTAACATCA	TTCCGAGCAG	CACTGGTGCT	GCCAAGGCTG	TTGGTAAGGT	тсттсс†
	781	790	800	810	820	830	840	850	860	870	880	890	900	910
GAPDH forward reverse Consensus	GAGTT	GAACGGCAA	IGCTTACCGG1 GG1	INTGTCCTTC Intgtccttc	GTGTTCCCAC GTGTTCC	TGTGGATGT	STCAGTTGTT(ATCTCACTG	TAGAACTGA	GAAGGCTGCA	TCATATGATG	ACATCAAGAA TCAAGAA	GGCTATCAAG GGCTATCAAG	GCGGCAT GCG
consensus	*****	• • • • • • • • •		acgreerre	seguere.	********	• • • • • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	•••ccaagaa	gguuduudag	scs
Conscisus	911	920	930 930	940	950	960	970	980	990 990	1000	1010	1020	1030	1040

c) Primer3: vložit sekvence obou primerů a podívat se, jak jsme na tom

nastavené podmínky:

- *left (forward) primer: GGTATGTCCTTCCGTGTTCC*
- right (reverse) primer: CGCCTTGATAGCCTTCTTGA (aby byla zachována podmínka pro zadání right primer, tzn. 5'-3' on opposite strand)
- product size ranges: 50-150

Template masking a No mispriming lib Using 1-based seg	not se rary s uence	lecte pecif: posit:	d ied ions						Zvolené primery
OLIGO	start	len	tm	gc%	any th	3' th	hairpin	seq	
LEFT PRIMER	802	20	57.98	55.00	0.00	0.00	0.00	GGTATGTCCTTCCGTGTTCC	nehudou tvořit hairnins
RIGHT PRIMER	906	20	57.68	50.00	0.00	0.00	0.00	CGCCTTGATAGCCTTCTTGA	neoddod tront nan pino
SEQUENCE SIZE: 13	79								
INCLUDED REGION S	IZE: 1	379							
PRODUCT SIZE: 105	IZE: 1	379 ANY :	TH COMPL:	0.00,	PAIR 3'	тн соме	PL: 0.00	•	

d) Primer-BLAST: k ověření specifity primerů

V důsledku nepřítomnosti sekvence tohoto druhu v databázích nelze ověřit specifitu primeru.

<u>Zhodnocení primerů</u>: Dle výše uvedených kritérií lze říci, že vybrané primery pro sekvenci GAPDH u druhu Stipa grandis jsou vhodné, tj. odpovídají sekvenci daného druhu, neleží v oblasti vlásenek a nebudou tvořit vlásenky. Nevhodnost primerů by mohla vyloučit jejich nevhodná/nízká specifita, kterou však nelze v důsledku nepřítomnosti sekvencí druhu Stipa grandis v databázích posoudit.

DÚ9: Návrh primerů

1) Navrhněte mutační primery pro mutaci 100. aminokyseliny "vašeho" proteinu:

Identifikujte 100. AMK (X), zapište plánovanou mutaci ve tvaru: X100G

Identifikujte příslušný kodon

Pro identifikaci 100. AMK (X) využívám program SMS Range Extractor Protein. Vkládám FASTA formát sekvence "svého" proteinu a zadávám hodnotu 100 (jako 100. aminokyselina).

Sequence Manipulation Suite:

Range Extractor Protein

Range Extractor Protein accepts a protein sequence along with a set of positions or ranges. The residues corresponding to the positions or rang sequence, a set of FASTA records, as uppercase text, or as lowercase text. Use Range Extractor Protein to obtain subsequences using position i

Paste a raw sequence or one or more FASTA sequences into the text area below. Input limit is 500,000,000 characters.	
>AQY77150.1 TNF [Homo sapiens] MSTESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLIVAGATTLFCLLHFGVIGPQRE EFPRDLSLI SPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLANGVELRDNQLVVPSEGL YLIYSQVLF KGQGCPSTHVLLTHTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYEPIYLGGVFG LEKGDRLSA	10. AMK je Valin , lze tedy simulovat mutaci.
Enter the residue positions or ranges to be extracted. Use "" to represent a range, and use a comma to separate entries. The words 'start', 'end	
place of digits, to represent the Sequence Manipulation Suite - Mozilla Firefox —	
center, (center + 1)(center + 3 10 www.bioinformatics.org/sms2/range.extract_protein.html submit Clear Reset Range Extractor Protein.estruits	
Sequence segments sho "results for 233 residue sequence "AQY77150.1 TNF [Homo sapiens]" starting "MSTESMIRDV"	

10. AMK = Valin plánovaná mutace: V10G

V další fázi budeme identifikovat příslušný kodon. Využit opět SMS Range Extractor – ale DNA. Dosazuji FASTA formát CDS sekvence mRNA. Pokud bych identifikovala 100. aminokyselinu, volila bych rozsah nukleotidové sekvence 298..300. Jelikož mě ale zajímá 10. aminokyselina, rozsah upraven na 28..30.

Musí se shodovat kodon s produktem, tedy výslednou aminokyselinou z předchozího kroku. Ověření správnosti například s pomocí této tabulky.

Sequence Manipulation Suite: Range Extractor DNA

ange Extractor DNA accepts a DNA sequence along with a set of positions or ranges. The bases corresponding to the positions or ra sequence, a set of FASTA records, as uppercase text, or as lowercase text. Use Range Extractor DNA to obtain subsequences using p

Obtain bases from the Change for 702 residue sequence "NM_000594.4:178-879 Homo sapiens tumor necros
 Sequence segments sho
 GTG

		SECOND) BASE	
	UUU Phenyl- UUC alanine UUA Leucine	UCU UCC UCA UCG	UAU UAC UAA UAA UAA Stop codon Stop codon	UGU UGC UGA Stop codon UGG Tryptophan
	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC Histidine H CAA CAA Glutamate Q	C GU C GC C GA C GG
FIRST	AUU AUC AUA AUG AUG AUG AUG	ACU ACC ACA ACG	AAU AAC AAA AAG Lysine	AGU AGC AGA AGG Arginine
	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG GAG Glutamic acid	GGU GGC GGA GGG

Výsledný kodon GTG odpovídá Valinu.

Mutace by se dala jiným způsobem zapsat rovněž: V(GTG)10G(GGC)

- navrhněte mutační primery se záměnou v glycin (GGC)

Pro návrh mutačních primerů vycházím z programu SMS Range Extractor DNA; vložení FASTA formátu CDS sekvence. Pro návrh mutačních primerů je nutno vybrat 5 kodonů před mutací a 5 kodonů za mutací, pro 10. aminokyselinu tak volím rozmezí 13..45.

Sequence Manipulation Suite: Range Extractor DNA Range Extractor DNA accepts a DNA sequence along with a set of positions or ranges. The bases corresponding to the positions or ranges are returned sequence, a set of FASTA records, as uppercase text, or as lowercase text. Use Range Extractor DNA to obtain subsequences using position information Paste a raw sequence or one or more FASTA sequences into the text area below. Input limit is 500,000,000 characters. ATGAGCACTGAAAGCATGATCCGGGACGTGGAGCTGGCCGAGGAGGCGCTCCCCAAGAAGA sekvence 5 kodonů před, GTG, 5 kodonů za CAGGGGGGG CACCACGCT cttctgcctgctgcactttggagtgatcggcccccagagggaagagttccccagggacct Enter the base positions or ranges to be ovtracted. Use " " to represent of digits, to represent the beg Sequence Manipulation Suite - Mozilla Firefox _ sequence, the range '(end -(center + 1)..(center + 30)' ca ③ www.bioinformatics.org/sms2/range_extract_dna ... ⊠ ☆ 13..45 Range Extractor DNA results Submit Clear Reset >results for 702 residue sequence MM_000594.4:178-879 Homo sapiens tumor necrosis factor (TNF) Obtain bases from the AGCATGATCCGGGACGTGGAGCTGGCCGAGGAG · Sequence segments sh

V následujícím kroku se vrátím k FASTA formátu CDS – zvolím Graphics; v políčku Find vyplním sekvenci z předchozího kroku (AGCATGATCCGGGAC**GTG**GAGCTGGCCGAGGAG). Dalo by se označit za určitý kontrolní krok (vizualizace sekvence).

Homo sapiens tumor necrosis factor (TNF), mRNA

Následujícím krokem bude manuální mutace Valinu (V) za Glycin (G), respektive GTG >GGC. **Fyziologická sekvence:** AGCATGATCCGGGAC**GTG**GAGCTGGCCGAGGAG **Mutovaná sekvence:** AGCATGATCCGGGAC**GGC**GAGCTGGCCGAGGAG

Oligo Calc: Oligonucleotide Properties Calculator	
Enter Oligonucleotide Sequence Below OD calculations are for single-stranded DNA or RNA	Enter Oligonucleotide Sequence Below OD calculations are for single-stranded DNA or RNA
Nucleotide base codes	Nucleotide base codes
AGC ATG ATC CGG GAC GGC GAG CTG GCC GAG GAG	CTC CTC GGC CAG CTC GCC GTC CCG GAT CAT GCT Reverse mutační primer
Reverse Complement Strand/5 to 20 is:	Reverse Complement Strand(5' to 3') is:
CTC CTC GGC CAG CTC GCC GTC CCG GAT CAT GCT	AGC ATG ATC CGG GAC GGC GAG CTG GCC GAG GAG

Mutační primery:

- Forward (F): 5'-AGC ATG ATC CGG GAC GGC GAG CTG GCC GAG GAG-3'
- Reverse (R): 5'-CTC CTC GGC CAG CTC GCC GTC CCG GAT CAT GCT-3'

2) Podívejte se, zda jsou pro "váš" gen predikované nějaké konzervované mikroRNA.

Pro TNF jsou známy 2 konzervované mikroRNA (shodných 6 nukleotidů): miR-130-3p/301-3p/454-3p; miR-181-5p

Human TNF ENST00000449264.2 3' UTR length: 799

Conserved

	Predicted consequential pairing of target region (top) and miRNA (bottom)	Site type	Context++ score	Context++ score percentile	Weighted context++ score	Conserved branch length	Р _{СТ}
Position 451-457 of TNF 3' UTR	5'UCCCUCUAUUUAUGUUUGCACUU	7mer-	-0.36	98	-0.36	3.438	0.49
hsa-miR-454-3p	3 UGGGAUAUUCGUUAUAACGUGAU	mö					
Position 451-457 of TNF 3' UTR	5'UCCCUCUAUUUAUGUUUGCACUU	7mer-	-0.38	98	-0.38	3.438	0.49
hsa-miR-130a-3p	3' UACGGGAAAAUUGUAACGUGAC	mo					
Position 451-457 of TNF 3' UTR	5'UCCCUCUAUUUAUGU-UUGCACUU	7mer-	-0.36	98	-0.36	3.438	0.49
hsa-miR-130b-3p	3' UACGGGAAAGUAGUAACGUGAC	mo					
Position 451-457 of TNF 3' UTR	5' UCCCUCUAUUUAUGUUUGCACUU	7mer- m8	-0.35	98	-0.35	3.438	0.49
hsa-miR-3666	3. AGCCGUAGAUGUGAACGUGAC						
Position 451-457 of TNF 3' UTR hsa-miR-301b-3p	5'UCCCUCUAUUUAUGUUUGCACUU 3' CGAAACUGUUAUAGUAACGUGAC	7mer- m8	-0.34	98	-0.34	3.438	0.49
Position 451-457 of TNF 3' UTR hsa-miR-301a-3p	5'UCCCUCUAUUUAUGUUUGCACUU 3' CGAAACUGUUAUGAUAACGUGAC	7mer- m8	-0.34	98	-0.34	3.438	0.49
Position 451-457 of TNF 3' LITR	5. UCCCUCUAUUUAUGUUUGCACUU						
hsa-miR-4295	IIIIII 3' UUCCUUUUGUAACGUGAC	7mer- m8	-0.30	96	-0.30	3.438	0.49