
Division, loops and principal isotopy

Local units. Let a be an element of a quasigroup Q. By the definition of quasi-
groups there exists exactly one b ∈ Q such that La(b) = a. Denote this b by fa.
The equality La(b) = a may be written as a = afa. The element fa is call the right
local unit of a.

Similarly define the left local unit ea such that eaa = a.

Associative triples. Let Q be a quasigroup. A triple (x, y, z) ∈ Q3 is said to be
associative if xy · z = x · yz.
Claim. The triple (ea, a, fa) is associative.

Proof. eaa · fa = afa = a = eaa = ea · afa.
Corollary. A quasigroup of finite order n contains at least n associative triples.

Definitions. A quasigroup Q is said to be idempotent if xx = x for every x ∈ Q.
The quasigroup Q is said to be maximally nonassociative if

∀x, y, z ∈ Q : xy · z = x · yz ⇔ x = y = z.

Exercise. Show that a maximally nonassociative quasigroup has to be idempotent.
Show that a quasigroup of finite order n contains exactly n associative triples if and
only if it is maximally nonassociative.

Existence of maximally nonassociative quasigroups. There are no maxi-
mally nonassociative quasigroups of orders 2, 3, 4, 5, 6, 7, 8, 10. Maximally nonasso-
ciative quasigroups of other orders n are known to exist for n = 9, n = 13 and for
all n ≥ 16 such that n /∈ {40, 42, 44, 56, 66, 77, 88, 90, 110} if n is not of the form 2p,
p a prime, or 2p1p2, p1 ≤ p2 < 2p1.

Challenge. Find a maximally nonassociative quasigroup of order 2p, p a prime.

Global units. An element e ∈ Q is a called a left unit if ea = e for all a ∈ Q.
Similarly define the right unit. There is at most one left unit and at most one right
unit. If there exist both of them, then they coincide since e = ef = f . An element
e ∈ Q is the left unit if and only if Le = idQ. The right unit f is characterized by
Rf = idQ. A both sided unit is also called the neutral element.

Loops and reduced latin squares. A quasigroup is called a loop if and only if
it possesses a neutral element. Suppose that Q is a loop with unit equal to 1. If
a, b ∈ Q are such that ab = b, then a = 1. This means that if a ̸= 1, then La fixes
no point of Q. Similarly, if a ̸= 1, then Ra is a fixed point free permutation.

Let Q be a loop on {1, 2, . . . , n} with 1 the unit. The body of the multiplication
table contains 1, 2, . . . , n in the first row (from the left to the right) and 1, 2, . . . , n
in the first column (from the top to the bottom). This is exactly the condition
when a latin square is called reduced.

Equational definition of quasigroups. Another way of saying that La is per-
mutation is to say that for any b ∈ Q there exists exactly one x ∈ Q such that
ax = b. This approach is used in another definition of a quasigroup which goes by
saying that for any a, b ∈ Q the equations

ax = b and ya = b have unique solutions x and y.

How to express these x and y? We have La(x) = b and Ra(y) = b. Thus x = L−1
a (b)

and y = R−1
a (b). By convention, set

L−1
a (b) = a\b (the left division), and

R−1
a (b) = b/a (the right division).
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What are the properties of the divisons when seen as binary operations? Since
LxL

−1
x (y) = y = L−1

x Lx(y) and RxR
−1
x (y) = y = R−1

x Rx(y) we get equations

x(x\y) = y = x\(xy) and (y/x)x = y = (yx)/x. (D)

Claim. If (Q, ·, \, /) fulfils (D), then (Q, ·) is a quasigroup.
Proof. To show that ax = b possesses a unique solution note first that a(a\b) = b,
and then observe that ax1 = ax2 implies x1 = a\(ax1) = a\(ax2) = x2.

We can thus regard (D) as an alternative definition of a quasigroup. This is a
definition in the sense of universal algebra. A quasigroup is an algebra (Q, ·, \, /)
where all operations are binary and the identities of (D) are satisfied.

This definition is usually called equational. The original definition may be called
combinatorial. The equational definition of loop involves a nullary operation 1, and
the laws x · 1 = x = 1 · x.
Claim. If Q is a quasigroup and x, y ∈ Q, then x/(y\x) = y = (x/y)\x. If Q is a
loop, then x/1 = x = 1\x.
Proof. Indeed, y = (y(y\x))/(y\x) = x/(y\x) and y = (x/y)\((x/y)y) = (x/y)\y.
If 1 is the unit, then x = (x · 1)/1 = x/1 and x = 1\(1 · x) = 1\x.

Subquasigroups and congruences. Passing between combinatorial and equa-
tional definition is usually done informally. However, it is worth remembering that
the equational definition exhibits in a clear fashion that subquasigroups have to be
closed under divisions and congruences of quasigroups have to be compatible with
divisions.

Exercises. (1) If Q is a finite quasigroup, then a subset closed under multiplication
is a subquasigroup and an equivalence compatible with · is a congruence of the
quasigroup.
(2) Let Q be a quasigroup. Show that an equivalence ∼ on Q is a congruence if
and only if for all x, y, z ∈ Q

x ∼ y ⇒ xz ∼ yz, zx ∼ zy, x/z ∼ y/z and z\x ∼ z\y.

Quasigroup words and reduction. Let X be a set of symbols. Denote byW (X)
the absolutely free algebra over X in signature (·, \, /). The elements of W (X) are
called quasigroup words. A quasigroup word is called reduced if it contains no
subword (subterm) of one of the forms

(st)/t, (s/t)t, t(t\s), t\(ts), t/(s\t) and (t/s)\t. (R)

For u, v ∈ W (X) write u → v if u contains a subterm that has a form that occurs
in (R), and if v arises from u by replacing this term by s. The transitive closure
of → is denoted by →∗. A word is thus reduced if and only if it is terminal with
respect to →∗.

The reduction decreases the size of the term. Hence for each u ∈ W (X) there
exists a reduced v ∈W (X) such that u→∗ v. The following fact appears in various
contexts. Our proof will be hence brief.

Lemma. Let u,w1, w2 ∈ W (X) be such that u →∗ w1 and u →∗ w2. If both w1

and w2 are reduced, then w1 = w2.

Proof. Let u be the smallest counterexample. To get a contradiction it suffices to
show that if u → u1 and u → u2, then there exists u3 such that u1 →∗ u3 and
u2 →∗ u3. Indeed, if ui →∗ wi, i ∈ {1, 2, 3}, then w1 = w3 = w2 since both u1 and
u2 are smaller (with respect to the length of the quasigroup word) then u.

Let ui be obtained from u by replacing a subterm vi by si, where vi takes the
form (siti)/ti, (si/ti)ti, etc., as listed in (R), i ∈ {1, 2}. The situation is easy to
solve if v2 is a subterm of an occurence of t1. In that case make v2 → s2 in both
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occurence of t1 and then replace the changed subterm by s1. This means that
u2 →∗ u1. If v2 is a subterm of s1, then define u3 by making the replacement
v2 → s2 within the occurence of s1 in u2. Both u1 →∗ u3 and u2 →∗ u3 are then
true.

If there exists a subterm a1a2 of u such that v1 is a subterm of a1 and v2 a
subterm of a2, then the reductions commute and the existence of u3 is obvious.

What remains are situations that are usually called critical. These are the situa-
tions when one of the terms has a root within the other term. Suppose that v2 sits
within v1. We shall consider only the case when v1 = (s1t1)/t1. The other cases
are similar. The only nontrivial possibility in (R) with / at the top is t2/(s2\t2).
However t2 = s1t1 and t1 = s2\s2 is impossible. Therefore there must be v2 = s1t1.
If s1t1 = (s2/t2)t2, then t1 = t2 and both replacements change v1 to s1 = s2/t1.
Thus u1 = u2 and nothing has to be constructed.

If s1t1 = t2(t2\s2), then s1 = t2 and t1 = t2\s2. Thus

v1 → s1 = t2 and v1 = v2/t1 → s2/t1 = s2/(t2\s2) → t2.

The latter replacement shows that u2 → u1. □

Denote by ≡ the least congruence of W (X) such that W (X)/≡ is a quasigroup.
This is a free quasigroup with basis {[x]≡; x ∈ X}. Denote by F (X) the subset of
W (X) that is formed by all reduced words. By the Lemma for each w ∈ W (X)
there exists a unique reduced word ρ(w) such that w →∗ ρ(w). If u → v, then
ρ(u) = ρ(v). From that it follows that u ≡ v if and only if ρ(u) = ρ(v). Hence
defining operations by

u · v = ρ(uv), u/v = ρ(u/v) and u\v = ρ(u\v)

makes F (X) a free quasigroup with basis X.
To get a free loop consider loop words in ·, \, / and 1, and add reduction rules

that change each of s/1, s · 1, 1 · s and 1\s to s.

Loops from quasigroups. Let Q be a quasigroup, and let e and f be elements of
Q. Set x ∗ y = x/f · e\y, for all x, y ∈ Q. Translations of (Q, ·) are denoted by Lx

and Rx, while translations of (Q, ∗) will be denoted by λx and ρx, x ∈ Q. Clearly,

λx = Lx/fL
−1
e and ρy = Re\yR

−1
f ,

for each x, y ∈ Q. Note that x ∗ (ef) = x/f · f = x and (ef) ∗ y = e · e\y = y. This
means that (Q, ∗) is a loop, and ef is the neutral element of this loop.

Principal isotopes. An isotopy of quasigroups (α, β, γ) : Q1 → Q2 is called prin-
cipal if the underlying sets of Q1 and Q2 coincide and γ = idQ1

. Call Q2 a principal
isotope of Q1 if there exists a principal isotopy Q1 → Q2.

Let (Q, ∗) be a principal isotope of (Q, ·). There thus exist α, β ∈ Sym(Q) such
that x ∗ y = α(x)β(y). The translations of (Q, ·) are denoted by Lx and Rx, and
those of (Q, ∗) by λx and ρx, x ∈ Q. Clearly,

λx = Lα(x)β and ρy = Rβ(y)α,

for each x, y ∈ Q. If (Q, ∗) is a loop, then there must exist x ∈ Q such that
λx = ρx = idQ. If this true, then there exist e, f ∈ Q such that β = L−1

e and

α = R−1
f . If such e, f exist, then x ∗ y = α(x)β(y) = x/f · e\y. This is a loop, as

observed above. We have proved the following statement:

Proposition 1. Let (Q, ·) be a quasigroup. A principal isotope (Q, ∗) of (Q, ·) is
a loop if and only if there exist e, f ∈ Q such that x ∗ y = x/f · e\y for all x, y ∈ Q.



4

Quasigroups induced by isomorphism and isotopy. Suppose that Q is a
quasigroup and S a set. Suppose also that there exists a bijection γ : Q→ S. Then
there is only one way how to define a quasigroup operation upon S, and that is by
st = γ(γ−1(s)γ−1(t)) for all s, t ∈ Q. The quasigroup (S, ·) is called isomorphically
induced by γ.

Similarly, if α, β, γ are bijections Q → S, then st = γ(α−1(s)β−1(t)) yields the
only quasigroup upon S for which (α, β, γ) is an isotopy (Q, ·) → (S, ·). This is the
quasigroup isotopically induced by (α, β, γ).

Loops isotopic to a quasigroup. Suppose that (α, β, γ) is an isotopy of quasi-
groups Q1 → Q2. Let (Q1, ∗) be the quasigroup isomorphically induced by the
bijection γ−1 : Q2 → Q1. Isotopies may be composed. Hence

(γ−1, γ−1, γ−1)(α, β, γ) = (γ−1α, γ−1β, idQ1)

is a principal isotopy (Q1, ·) → (Q1, ∗), while (Q1, ∗) ∼= (Q2, ·). This gives immedi-
ately:

Proposition 2. Each quasigroup isotopic to a quasigroup Q is isomorphic to a
principal isotope of Q.

Proposition 3. Let (Q, ·, \, /) be a quasigroup. For each loop L isotopic to Q
there exist e, f ∈ Q such that L is isomorphic to a loop on Q with multiplication
x ∗ y = x/f · e\y, for all x, y ∈ Q.

Proof. By the preceding statement every loop isotopic to Q is isomorphic to a
principal isotope of Q. By Proposition 1, a principal isotope that is a loop has to
be of the form x/f · e\y. □

Exercise. Prove directly that each loop isotopic to a group G is isomorphic to G.

Notational remark: If H is a subgroup of a group G, then it is usual to write H = 1
if H is the trivial subgroup, that is if |H| = 1. Thus, if G is a permutation group
on Ω, H = 1 means that H = {idΩ}.

Regular groups. A permutation group on Ω is, by definition, every subgroup of
Sym(Ω). A permutation group H ≤ Sym(Ω) is transitive if for all α, β ∈ Ω there
exists h ∈ H such that h(α) = β. Note that it suffices if the former holds for a
single α ∈ Ω. In a transitive group all stabilizers Hα = {h ∈ H; h(α) = α} are
conjugate one to another. Hence if Hα = 1 for one α ∈ Ω, then Hα = 1 for all
α ∈ Ω.

The permutation group H ≤ Sym(Ω) is called regular if it is transitive, and if
Hα = 1, for any α ∈ Ω. Note that the latter condition may also be expressed as
h = idΩ whenever h ∈ H fixes a point.

Let G be a group. Then {Lx; x ∈ G} is a regular permutation group on G. It is
called the left regular representation of G.

Each regular permutation group may be interpreted as a left regular represen-
tation of an abstract group. To see this consider a regular group G upon Ω. Fix
a point ω ∈ Ω and identify it with the unit element 1 of an abstract group (Ω, ·)
that will be now described. For each α ∈ Ω denote by ψα the element of G that
sends 1 = ω upon α. Since G is regular, the permutation ψα is determined by α
uniquely. Furthermore, G = {ψα; α ∈ Ω}. Define a binary operation · on Ω by
α·β = ψα(β), and define Ψ: G→ Ω by Ψ(ψα) = α. Since ψαψβ(ω) = ψα(β) = α·β,
we have ψαψβ = ψα·β . Therefore Ψ(gh) = Ψ(g) · Ψ(h) for all g, h ∈ G. Thus
Ψ: (G, ◦) ∼= (Ω, ·), and for each α ∈ Ω the mapping ψα coincides with the left
translation of α in (Ω, ·).
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Note that denoting the neutral element by 1 is a matter of convention. If G is
abelian, then it may be more natural to denote the neutral element by 0 and the
binary operation by +.

Loops with translations closed under composition. A loop Q is said to have
left translations closed under composition if

∀x, y ∈ Q ∃z ∈ Q such that LxLy = Lz.

If this is true, then xy = LxLy(1) = Lz(1) = z, implying LxLy = Lxy for all x, y ∈
Q. But that is equivalent to associativity since LxLy(v) = x·yv and Lxy(v) = xy ·v.
This proves that a loop with left translations closed under composition has to be a
group.

Albert’s Theorem. A loop isotopic to a group G is isomorphic to G.

Proof. By Proposition 3 only the principal isotopes x/f · e\y may be considered.
The set of the left translations of such an isotope is equal to

{Lx/fL
−1
e ; x ∈ G} = {LxL

−1
e ; x ∈ G} = {Lxe−1 ; x ∈ G} = {Lx; x ∈ G}.

The set of left translations of the principal isotope thus coincides with that of G.
The left translations are closed under composition. The principal isotope thus must
be a group. The both groups are isomorphic since they have coinciding left regular
representations. □


