QUASIGROUPS, 3-NETS AND ISOTOPY

Definition of a quasigroup. Let - be a binary operation upon a set ). For every
a € @ define L,: Q — Q and R,: @ — Q by

Ly:z— ax and R,: x — xa.
Call L, the left translation of the element a, and R, the right translation.

The pair (Q,-) is called a quasigroup if L, and R, permute @ for each a € Q.
There are many alternative definitions of a quasigroup. We shall get to them later.

Operations of @) will be denoted by different symbols. For example + or * or o.
The choice of - is implicit. Hence stating that @ is a quasigroup means that we are
considering the pair (Q,-).

The application of - may be replaced by a juxtaposition. Thus xy is the same
as x - y. It is usual to assume that the juxtaposition binds more tightly than the
explicit use of an operation. E.g., zu - (yz - w) is the same as (z - u) - ((y - 2) - w).

Multiplication table. Every binary operation may be represented by its multi-
plication (or operational) table. Both

are multiplication tables of a quasigroup. The operation of the quasigroup upon
the left is equal to (x 4+ y) mod 3. The formula for the operation of the quasigroup
upon the right is  * y = —x — y mod 3. The latter quasigroup is idempotent, i.e.,
xxx =z for every z € Q.

Consider the quasigroup (Zs,+) and decompose it to the border of the table
(upon the left) and the body of the table (upon the right):

+]10 1 2

0 01 2
1 1 2 0
2 2 01

Latin squares and quasigroups. Let S be a finite set, |S| = n. A latin square
over S is an n x n matrix A = (a;;) such that for every i € {1,...,n}

S={ai1,...,ain} ={a1i, ..., ani}.

If - is a binary operation upon set @, then (Q, ) is a quasigroup if and only if the
body of the operation table is a latin square.

Lines induced by a quasigroup. Let (Q,-) be a quasigroup. Put P = Q x Q
and treat the set P as a set of points. Define £;, 1 < i < 3, as sets of parallel lines
(penwls) such that £ = {Ta; a < Q}’ Ly = {Ca§ (NS Q} and £3 = {Sa§ a € Q}a
where

ro ={(a,2); z € @} (the row of a)

co ={(z,a); v € Q} (the column of a)

sa = {(z,y) € Q X Q; ry =a} (the transversal of a)
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Axioms of the 3-net. The system (P; L1, L2, L3) clearly fulfils the following ax-
ioms:

e Vpe P,Vie{1,2,3}3! ¢ € L; such that p € ¢;

o Vi, j€ {1,2,3}, where 75] (fz € L;, fj S ,Cj = |€Z ﬂéj\ = 1)
This can be put in words by saying that through each point there passes exactly one
line of a given pencil, and that two lines from different pencils intersect in exactly
one point.

Any system that fulfils the above two axioms is called a 3-net.

Theorem. Let (P;L1,Ls,L3) be a 3-net. Then |L1| = |Lo| = |L3] = |€] for any
teJL;, ie{1,2,3}.

Proof. Suppose that 1 <i < j <3, ¢ €L, {; € L; and {1,2,3} = {4,,k}. Map
¢; upon ¢; in the following way: take ¢ € ¢; and consider the line ¢, € L that
passes through ¢. This line intersects £; in a point, say ¢’. The mapping g — ¢’ is
a bijection since through every point of £; there passes exactly one line of Lj.
The mapping ¢ — ¢’ thus also proves that |Li| = |¢;]. If £; is another line from
L;, then |Lg| = |¢;| = |¢;| by the same argument. O

Coordinatization. Let (P; L1, L2, L3) be a 3-net, and let @) be a set of the same
cardinality as £;, 1 <7 < 3. Suppose that pu;: Q — L; are bijections. If z,y € @
then there exists a unique line in £3 that passes through the intersection of uj(x)
and pg(y). This line is equal to some p3(z). Hence there exists a binary operation
upon @ such that

zy =2z & () Npa(y) Nps(z) # 0. (€)

The operation is a quasigroup since knowledge of y and z determines = uniquely,
and, similarly, knowledge of x and z determines y uniquely.

Let @ be a quasigroup and let p;: @ — L; be a bijection for each i € {1,2,3}.
If (C) holds for all z,y,z € Q, then (u1, us, p3) is called a coordinatization of the
3-net (P; Ly, Lo, L3).

Proposition. Let (P;Ly,Ls,L3) be a 3-net, and let Q and Q' be quasigroups.
If pi: @ — L; and p}: Q' — L; are bijections such that both (p1, pa,us) and
(1, ph, 5) are coordinatizations of the 3-net (P; Ly, La,L3), then the mappings
a; = (ph) i, 1< i < 3, are bijections Q — Q' that fulfil

xy =2z & o1(z)az(y) = as(z).

Proof. The mapping «; is a bijection since both u;: Q@ — £; and ui: Q' — L;
are bijections, i € {1,2,3}. Let z,y,z € @ be such that xy = z. Then pq(z) N
ua(y) N ps(z) # 0, by the definition of coordinatization. This can be written as
Wi () N hoa(y) N fhas(z) # B since wla; = pl(u) s = pi. This means
that a1(x)az(y) = as(z) holds in Qo since (u,ph, ph) is a coordinatization of

(P; L1, Lo, L3). U

Isotopy. Suppose that @)1 and @2 are quasigroups. Suppose that «, 8 and v are
bijections Q1 — Q2. The triple (a, 8,7) is called an isotopy Q1 — Q2 if and only
if

Ve,y,2€ Q: zy=2z < alx)B(y) =v(2).
This can be also expressed as y(zy) = a(x)B(y). The fact that «, 8 and ~ are
bijections means that is suffices to verify zy = z = a(x)8(y) = v(2). Indeed, if
a(x)B(y) = v(z) and zy = 2/, then a(z)B(y) = v(z') and z = 2’
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Quasigroups Q1 and @2 are called isotopic if and only if there exists an isotopy

Q1 — Q2.

Theorem. Quasigroups Q1 and Q2 are isotopic if and only if there exists a 3-net
(P; L1, Lo, L3) that may be coordinatized both by Q1 and Q2.

Proof. By the Proposition any two quasigroups coordinatizing the same 3-net are
isotopic. Suppose now that (o, s, a3) is an isotopy Q1 — Q2. We shall show that
both 1 and @2 may be used to coordinatize the 3-net of Q5 that consists of row
lines 7, column lines ¢, and symbol lines s, b € Q2. A coordinatization (v1, ve, v3)
by Q2 is defined straightforwardly as v (b) = rp, v2(b) = ¢, and v3(b) = sp. The
triple (v, v2, v3) coordinatizes the 3-net since zy = z if and only if r, Ne, N, # 0,
for any x,y,z € Q.

A coordinatization (A1, A2, Az) by Q1 is defined so that Ai(a) = 74, (a), A2(a) =
Cas(a) and A3(a) = 5q,(q), for each a € Q1. Suppose that z,y,z € Q1. By the
definition, A1 (2) N A2(y) N A3(2) is equal to 74, () N Cay(y) NSas(z)- This is nonempty
if and only if a;(z) - a2(y) = as(z). Since (a1, as,as) is an isotopy Q1 — Qa,
the latter equality holds if and only if zy = z. Therefore xy = z if and only if
A1(z) N A2(y) N A3(z) # 0. This verifies that (A1, A2, A3) is a coordinatization of the
3-net upon Q2 X Qs. O

Elementary algebraic properties of isotopies. Suppose that (o, 3,7): Q1 —
Q2 and (8,e,m): Q2 — Q3 are isotopies. Then both (da,eB,ny): Q1 — Q3 and
(a1, 87547 : Q2 — Q1 are isotopies.

To verify the former property consider z,y € Q1. Then da(z) - 8(y) = n(a(x) -
B(y)) = ny(zy). To verify the latter property consider z’',y’ € Q2. There exist
unique z,y € Q1 such that 2’ = a(z) and y' = B(y). Now, a1 (/)37 1(y) = 2y =

—1 — ~—1 ALt
7 (wy) =7 (a(2)B(y) =7 (@)

Note that «: Q1 — Q2 is an isomorphism if and only if (o, q,«) is an iso-

topomism Q1 — Qs.

Autotopies and the left nucleus. Let Q be a quasigroup. An isotopy Q@ — @
is called an autotopy. All autotopies form a group. This group will be denoted by

Atp(Q).

Consider a € @ and recall that L, denotes the left translation of the element a.
The triple (Lq,idg, La) is an isotopy if and only if L, (z) - idg(y) = La(zy) for all
x,y € Q. This is the same as

a-xy=ax-y forall z,y € Q.

All a € @ that fulfil this conditions form a subset of @ that is called the left nucleus.
It is denoted by Nx(Q). Elements of Nyx(Q) are those elements of @ that may be
described by saying that they ‘associate upon the left’.

Exercise. Let G be a group. Describe Atp(G).



