1. Working with cliques:

- a) How many cliques are there on the given graph?
- b) Which neighbourhood relation on 13 vertices would result in the least possible number of cliques? What is the number of cliques in that case?
- c) Which neighbourhood relation on 13 vertices would result in the maximum possible number of cliques? What is the number of cliques in that case?
- d) Draw a neighbourhood relation that results in exactly 20 cliques.
- e) Is there any other way of representing the neighbourhood relation, other than an undirected graph?
- f) Is there any neighbourhood relation relevant for the regions of Czech Republic other than the one based on the common boundary?

a)
$$p'$$
, $13 \times 5i5$, $24 \times 5ii5$, $12 \times 5ii6$, $12 \times 5i6$, $12 \times 5i6$ => 50 cliques
b) p' , $13 \times 5i3$ => 14
c) $\frac{13 \cdot 12}{2} = \binom{13}{2}$, $5i \cdot j7$... mumber of edges in complete graph
 $2^{13} = 8196$... number of cliques ... $2^{|L|}$... total number of subsets
 $\binom{13}{6} + \binom{13}{1} + \binom{13}{2} + \binom{13}{3} + \dots + \binom{13}{45} = (1+1)^{13} = 2^{13}$
 $5i \cdot j7$, $5i \cdot j7$, $5k1 \cdot p'$
 M matrix representation $k = (\alpha_{ij})_{ij=1}^{\infty}$ $\alpha_{ij} = \binom{1}{2}$... inj