Subtest A

Task 1

1 h
2 b
3 g
4 a
5 d

Task Two

Say whether the following statements are 'True' (T), 'False" (F), or 'We do not know' (D). Circle the correct answer.

1 Soundararajan and Lemke Oliver first studied primes in base 10 up to 1,000.
(False: Soundararajan studied base 3 up to 1,000, afterwards worked with Lemke Oliver to study primes in base 3 up to 400 billion, then other bases)

2 Soundararajan was inspired by a lecture on prime numbers given by Tadashi Tokieda.
(D: topic not mentioned, just the fact that it mentioned coin tosses)

3 Soundararajan and Lemke Oliver have used their findings to prove the prime k-tuples conjecture.
(False: the conjecture predicts their results, but there is no proof yet)

4 The prime k-tuples conjecture predicts the biases that Soundararajan and Lemke Oliver have found in primes.
(True)

5 The prime k-tuples conjecture states precise patterns among prime numbers. (True)

Subtest B

Task 2

1 Coincident
2 Secant
3 Perpendicular
4 Osculating plane
5 Trihedron
6 Singularities
7 Indicatrix

Subtest C

1 codomain
2 stationary point
3 factorization
4 jump discontinuity / discontinuity of the first kind

Subtest D

1 represent
2 include
3 a point
4 calculate
5 using
6 restrict
7 unit magnitude
8 normalised
9 combine
10 required
11 interpolating
12 equal
13 made up
14 similarity
15 properties

Subtest G

Task One

1 (has) encountered
2 reading
3 to be
4 to make
5 corresponding
6 estimating
7 exist(s)
8 are expressed
9 depend
10 to define (0.5)
11 to obtain (0.5)

Task Two

1 an	8 the	15 the
2 zero	9 the	16 zero
3 the (0.5)	10 the	
4 a	11 a	
5 zero	12 the	
6 a	13 the	14 zero
7 the (0.5)		

Subtest H
a/ For example, we can search for models where a given path property is true in a given initial state.
b/ Theorem 1 is important for two reasons: First, it states that all relations where this theorem is applied contain an inconsistency.
c/ Instead of 20, 50 students participated in the experiment.

Subtest I

a/
The same holds for the semiring $\mathrm{Mn}, \mathrm{n}(\mathrm{S})$. applies
The same applies to the semiring $\mathrm{Mn}, \mathrm{n}(\mathrm{S})$.
b/
Choose point G to represent the number 0 . let
Let point G represent the number 0 .
c/
$p \in A$ implies that $p \in A \cup B$. If
If $p \in A$, then $p \in A \cup B$.

Subtest J

1 interpretation

2 inaccuracies
3 expressible
4 desirable
5 calculation
6 algebraic
7 requirement
8 sufficiently
9 closed
10 uniformly

