Subtest A

Task 1

1 h 2 b 3 g 4 a

5 d

Task Two

Say whether the following statements are 'True' (T), 'False'' (F), or 'We do not know' (D). Circle the correct answer.

1 Soundararajan and Lemke Oliver first studied primes in base 10 up to 1,000. (False: Soundararajan studied base 3 up to 1,000, afterwards worked with Lemke Oliver to study primes in base 3 up to 400 billion, then other bases)

2 Soundararajan was inspired by a lecture on prime numbers given by Tadashi Tokieda. (D: topic not mentioned, just the fact that it mentioned coin tosses)

3 Soundararajan and Lemke Oliver have used their findings to prove the prime k-tuples conjecture.

(False: the conjecture predicts their results, but there is no proof yet)

4 The prime k-tuples conjecture predicts the biases that Soundararajan and Lemke Oliver have found in primes. (True)

5 The prime k-tuples conjecture states precise patterns among prime numbers. (True)

Subtest B

Task 2

- 1 Coincident
- 2 Secant
- 3 Perpendicular
- 4 Osculating plane
- 5 Trihedron
- 6 Singularities
- 7 Indicatrix

Subtest C

- 1 codomain
- 2 stationary point
- 3 factorization
- 4 jump discontinuity / discontinuity of the first kind

Subtest D

1 represent 2 include 3 a point 4 calculate 5 using 6 restrict 7 unit magnitude 8 normalised 9 combine 10 required 11 interpolating 12 equal 13 made up 14 similarity 15 properties

Subtest G

Task One 1 (has) encountered 2 reading 3 to be 4 to make 5 corresponding 6 estimating 7 exist(s) 8 are expressed 9 depend 10 to define (0.5) 11 to obtain (0.5)		
Task Two		
1 an	8 the	15 the
2 zero	9 the	16 zero
3 the (0.5)	10 the	
4 a	11 a	
5 zero	12 the	
6 a	13 the	
7 the (0.5)	14 zero	
Subtest H		

a/ For example, we can search for models where a given path property is true in a given initial state.

b/ Theorem 1 is important for two reasons: First, it states that all relations where this theorem is applied contain an inconsistency.

c/ Instead of 20, 50 students participated in the experiment.

Subtest I

a/

The same holds for the semiring Mn,n(S). **applies** The same <u>applies to</u> the semiring Mn,n(S).

b/

Choose point G to represent the number 0. **let** <u>Let point G represent</u> the number 0.

c/ $p \in A$ implies that $p \in A \cup B$. If If $p \in A$, then $p \in A \cup B$.

Subtest J

interpretation
inaccuracies
expressible
desirable
calculation
algebraic
requirement
sufficiently
closed
uniformly